crypto/internal/fips140/mldsa: new package

Change-Id: I6a6a6964fabee819e62bb6eda032dee6a60d907a
Reviewed-on: https://go-review.googlesource.com/c/go/+/717781
Reviewed-by: Daniel McCarney <daniel@binaryparadox.net>
Reviewed-by: Mark Freeman <markfreeman@google.com>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Junyang Shao <shaojunyang@google.com>
This commit is contained in:
Filippo Valsorda
2025-11-04 19:04:00 +01:00
committed by Gopher Robot
parent 62741480b8
commit b59efc38a0
12 changed files with 3361 additions and 3 deletions

View File

@@ -0,0 +1,82 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"bytes"
"crypto/internal/fips140"
_ "crypto/internal/fips140/check"
"crypto/internal/fips140/sha256"
"errors"
"sync"
)
func fipsPCT(priv *PrivateKey) {
fips140.PCT("ML-DSA sign and verify PCT", func() error {
μ := make([]byte, 64)
sig, err := SignExternalMuDeterministic(priv, μ)
if err != nil {
return err
}
return VerifyExternalMu(priv.PublicKey(), μ, sig)
})
}
var fipsSelfTest = sync.OnceFunc(func() {
fips140.CAST("ML-DSA-44", fips140CAST)
})
// fips140CAST covers all rejection sampling paths, as recommended by IG 10.3.A,
// and as tested by TestCASTRejectionPaths. It tests only one parameter set as
// allowed by Note26. It tests the modified version of Algorithm 7 and 8 with a
// fixed mu/μ, as allowed by IG 10.3.A, Resolution 15. It compares sk and not
// pk, because H(pk) is part of sk, as allowed by the same Resolution. It
// compares the results with hashes instead of values, to avoid embedding several
// kilobytes of test vectors in every binary, as allowed by GeneralNote7.
func fips140CAST() error {
// From https://pages.nist.gov/ACVP/draft-celi-acvp-ml-dsa.html#table-1.
var seed = &[32]byte{
0x5c, 0x62, 0x4f, 0xcc, 0x18, 0x62, 0x45, 0x24,
0x52, 0xd0, 0xc6, 0x65, 0x84, 0x0d, 0x82, 0x37,
0xf4, 0x31, 0x08, 0xe5, 0x49, 0x9e, 0xdc, 0xdc,
0x10, 0x8f, 0xbc, 0x49, 0xd5, 0x96, 0xe4, 0xb7,
}
var μ = &[64]byte{
0x2a, 0xd1, 0xc7, 0x2b, 0xb0, 0xfc, 0xbe, 0x28,
0x09, 0x9c, 0xe8, 0xbd, 0x2e, 0xd8, 0x36, 0xdf,
0xeb, 0xe5, 0x20, 0xaa, 0xd3, 0x8f, 0xba, 0xc6,
0x6e, 0xf7, 0x85, 0xa3, 0xcf, 0xb1, 0x0f, 0xb4,
0x19, 0x32, 0x7f, 0xa5, 0x78, 0x18, 0xee, 0x4e,
0x37, 0x18, 0xda, 0x4b, 0xe4, 0x8d, 0x24, 0xb5,
0x9a, 0x20, 0x8f, 0x88, 0x07, 0x27, 0x1f, 0xdb,
0x7e, 0xda, 0x6e, 0x60, 0x14, 0x1b, 0xd2, 0x63,
}
var skHash = []byte{
0x29, 0x37, 0x49, 0x51, 0xcb, 0x2b, 0xc3, 0xcd,
0xa7, 0x31, 0x5c, 0xe7, 0xf0, 0xab, 0x99, 0xc7,
0xd2, 0xd6, 0x52, 0x92, 0xe6, 0xc5, 0x15, 0x6e,
0x8a, 0xa6, 0x2a, 0xc1, 0x4b, 0x14, 0x12, 0xaf,
}
var sigHash = []byte{
0xdc, 0xc7, 0x1a, 0x42, 0x1b, 0xc6, 0xff, 0xaf,
0xb7, 0xdf, 0x0c, 0x7f, 0x6d, 0x01, 0x8a, 0x19,
0xad, 0xa1, 0x54, 0xd1, 0xe2, 0xee, 0x36, 0x0e,
0xd5, 0x33, 0xce, 0xcd, 0x5d, 0xc9, 0x80, 0xad,
}
priv := newPrivateKey(seed, params44)
H := sha256.New()
H.Write(TestingOnlyPrivateKeySemiExpandedBytes(priv))
if !bytes.Equal(H.Sum(nil), skHash) {
return errors.New("unexpected private key hash")
}
var random [32]byte
sig := signInternal(priv, μ, &random)
H.Reset()
H.Write(sig)
if !bytes.Equal(H.Sum(nil), sigHash) {
return errors.New("unexpected signature hash")
}
return verifyInternal(priv.PublicKey(), μ, sig)
}

View File

@@ -0,0 +1,681 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"crypto/internal/constanttime"
"crypto/internal/fips140/sha3"
"errors"
"math/bits"
)
const (
q = 8380417 // 2²³ - 2¹³ + 1
R = 4294967296 // 2³²
RR = 2365951 // R² mod q, aka R in the Montgomery domain
qNegInv = 4236238847 // -q⁻¹ mod R (q * qNegInv ≡ -1 mod R)
one = 4193792 // R mod q, aka 1 in the Montgomery domain
minusOne = 4186625 // (q - 1) * R mod q, aka -1 in the Montgomery domain
)
// fieldElement is an element n of _q in the Montgomery domain, represented as
// an integer x in [0, q) such that x ≡ n * R (mod q) where R = 2³².
type fieldElement uint32
var errUnreducedFieldElement = errors.New("mldsa: unreduced field element")
// fieldToMontgomery checks that a value a is < q, and converts it to
// Montgomery form.
func fieldToMontgomery(a uint32) (fieldElement, error) {
if a >= q {
return 0, errUnreducedFieldElement
}
// a * R² * R⁻¹ ≡ a * R (mod q)
return fieldMontgomeryMul(fieldElement(a), RR), nil
}
// fieldSubToMontgomery converts a difference a - b to Montgomery form.
// a and b must be < q. (This bound can probably be relaxed.)
func fieldSubToMontgomery(a, b uint32) fieldElement {
x := a - b + q
return fieldMontgomeryMul(fieldElement(x), RR)
}
// fieldFromMontgomery converts a value a in Montgomery form back to
// standard representation.
func fieldFromMontgomery(a fieldElement) uint32 {
// (a * R) * 1 * R⁻¹ ≡ a (mod q)
return uint32(fieldMontgomeryReduce(uint64(a)))
}
// fieldCenteredMod returns r mod± q, the value r reduced to the range
// [(q1)/2, (q1)/2].
func fieldCenteredMod(r fieldElement) int32 {
x := int32(fieldFromMontgomery(r))
// x <= q / 2 ? x : x - q
return constantTimeSelectLessOrEqual(x, q/2, x, x-q)
}
// fieldInfinityNorm returns the infinity norm ||r||∞ of r, or the absolute
// value of r centered around 0.
func fieldInfinityNorm(r fieldElement) uint32 {
x := int32(fieldFromMontgomery(r))
// x <= q / 2 ? x : |x - q|
// |x - q| = -(x - q) = q - x because x < q => x - q < 0
return uint32(constantTimeSelectLessOrEqual(x, q/2, x, q-x))
}
// fieldReduceOnce reduces a value a < 2q.
func fieldReduceOnce(a uint32) fieldElement {
x, b := bits.Sub64(uint64(a), uint64(q), 0)
return fieldElement(x + b*q)
}
// fieldAdd returns a + b mod q.
func fieldAdd(a, b fieldElement) fieldElement {
x := uint32(a + b)
return fieldReduceOnce(x)
}
// fieldSub returns a - b mod q.
func fieldSub(a, b fieldElement) fieldElement {
x := uint32(a - b + q)
return fieldReduceOnce(x)
}
// fieldMontgomeryMul returns a * b * R⁻¹ mod q.
func fieldMontgomeryMul(a, b fieldElement) fieldElement {
x := uint64(a) * uint64(b)
return fieldMontgomeryReduce(x)
}
// fieldMontgomeryReduce returns x * R⁻¹ mod q for x < q * R.
func fieldMontgomeryReduce(x uint64) fieldElement {
t := uint32(x) * qNegInv
u := (x + uint64(t)*q) >> 32
return fieldReduceOnce(uint32(u))
}
// fieldMontgomeryMulSub returns a * (b - c). This operation is fused to save a
// fieldReduceOnce after the subtraction.
func fieldMontgomeryMulSub(a, b, c fieldElement) fieldElement {
x := uint64(a) * uint64(b-c+q)
return fieldMontgomeryReduce(x)
}
// fieldMontgomeryAddMul returns a * b + c * d. This operation is fused to save
// a fieldReduceOnce and a fieldReduce.
func fieldMontgomeryAddMul(a, b, c, d fieldElement) fieldElement {
x := uint64(a) * uint64(b)
x += uint64(c) * uint64(d)
return fieldMontgomeryReduce(x)
}
const n = 256
// ringElement is a polynomial, an element of R_q.
type ringElement [n]fieldElement
// polyAdd adds two ringElements or nttElements.
func polyAdd[T ~[n]fieldElement](a, b T) (s T) {
for i := range s {
s[i] = fieldAdd(a[i], b[i])
}
return s
}
// polySub subtracts two ringElements or nttElements.
func polySub[T ~[n]fieldElement](a, b T) (s T) {
for i := range s {
s[i] = fieldSub(a[i], b[i])
}
return s
}
// nttElement is an NTT representation, an element of T_q.
type nttElement [n]fieldElement
// zetas are the values ζ^BitRev₈(k) mod q for each index k, converted to the
// Montgomery domain.
var zetas = [256]fieldElement{4193792, 25847, 5771523, 7861508, 237124, 7602457, 7504169, 466468, 1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103, 2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868, 6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005, 2706023, 95776, 3077325, 3530437, 6718724, 4788269, 5842901, 3915439, 4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118, 6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596, 811944, 531354, 954230, 3881043, 3900724, 5823537, 2071892, 5582638, 4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196, 7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922, 3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370, 7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987, 5037034, 264944, 508951, 3097992, 44288, 7280319, 904516, 3958618, 4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969, 7063561, 189548, 4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330, 1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961, 2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955, 266997, 2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039, 900702, 1859098, 909542, 819034, 495491, 6767243, 8337157, 7857917, 7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579, 342297, 286988, 5942594, 4108315, 3437287, 5038140, 1735879, 203044, 2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974, 4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447, 7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775, 7100756, 1917081, 5834105, 7005614, 1500165, 777191, 2235880, 3406031, 7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136, 4603424, 6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531, 7173032, 5196991, 162844, 1616392, 3014001, 810149, 1652634, 4686184, 6581310, 5341501, 3523897, 3866901, 269760, 2213111, 7404533, 1717735, 472078, 7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524, 5441381, 6144432, 7959518, 6094090, 183443, 7403526, 1612842, 4834730, 7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782}
// ntt maps a ringElement to its nttElement representation.
//
// It implements NTT, according to FIPS 203, Algorithm 9.
func ntt(f ringElement) nttElement {
var m uint8
for len := 128; len >= 1; len /= 2 {
for start := 0; start < 256; start += 2 * len {
m++
zeta := zetas[m]
// Bounds check elimination hint.
f, flen := f[start:start+len], f[start+len:start+len+len]
for j := 0; j < len; j++ {
t := fieldMontgomeryMul(zeta, flen[j])
flen[j] = fieldSub(f[j], t)
f[j] = fieldAdd(f[j], t)
}
}
}
return nttElement(f)
}
// inverseNTT maps a nttElement back to the ringElement it represents.
//
// It implements NTT⁻¹, according to FIPS 203, Algorithm 10.
func inverseNTT(f nttElement) ringElement {
var m uint8 = 255
for len := 1; len < 256; len *= 2 {
for start := 0; start < 256; start += 2 * len {
zeta := zetas[m]
m--
// Bounds check elimination hint.
f, flen := f[start:start+len], f[start+len:start+len+len]
for j := 0; j < len; j++ {
t := f[j]
f[j] = fieldAdd(t, flen[j])
// -z * (t - flen[j]) = z * (flen[j] - t)
flen[j] = fieldMontgomeryMulSub(zeta, flen[j], t)
}
}
}
for i := range f {
f[i] = fieldMontgomeryMul(f[i], 16382) // 16382 = 256⁻¹ * R mod q
}
return ringElement(f)
}
// nttMul multiplies two nttElements.
func nttMul(a, b nttElement) (p nttElement) {
for i := range p {
p[i] = fieldMontgomeryMul(a[i], b[i])
}
return p
}
// sampleNTT samples an nttElement uniformly at random from the seed rho and the
// indices s and r. It implements Step 3 of ExpandA, RejNTTPoly, and
// CoeffFromThreeBytes from FIPS 204, passing in ρ, s, and r instead of ρ'.
func sampleNTT(rho []byte, s, r byte) nttElement {
G := sha3.NewShake128()
G.Write(rho)
G.Write([]byte{s, r})
var a nttElement
var j int // index into a
var buf [168]byte // buffered reads from B, matching the rate of SHAKE-128
off := len(buf) // index into buf, starts in a "buffer fully consumed" state
for j < n {
if off >= len(buf) {
G.Read(buf[:])
off = 0
}
v := uint32(buf[off]) | uint32(buf[off+1])<<8 | uint32(buf[off+2])<<16
off += 3
f, err := fieldToMontgomery(v & 0b01111111_11111111_11111111) // 23 bits
if err != nil {
continue
}
a[j] = f
j++
}
return a
}
// sampleBoundedPoly samples a ringElement with coefficients in [−η, η] from the
// seed rho and the index r. It implements RejBoundedPoly and CoeffFromHalfByte
// from FIPS 204, passing in ρ and r separately from ExpandS.
func sampleBoundedPoly(rho []byte, r byte, p parameters) ringElement {
H := sha3.NewShake256()
H.Write(rho)
H.Write([]byte{r, 0}) // IntegerToBytes(r, 2)
var a ringElement
var j int
var buf [136]byte // buffered reads from H, matching the rate of SHAKE-256
off := len(buf) // index into buf, starts in a "buffer fully consumed" state
for {
if off >= len(buf) {
H.Read(buf[:])
off = 0
}
z0 := buf[off] & 0x0F
z1 := buf[off] >> 4
off++
coeff, ok := coeffFromHalfByte(z0, p)
if ok {
a[j] = coeff
j++
}
if j >= len(a) {
break
}
coeff, ok = coeffFromHalfByte(z1, p)
if ok {
a[j] = coeff
j++
}
if j >= len(a) {
break
}
}
return a
}
// sampleInBall samples a ringElement with coefficients in {1, 0, 1}, and τ
// non-zero coefficients. It is not constant-time.
func sampleInBall(rho []byte, p parameters) ringElement {
H := sha3.NewShake256()
H.Write(rho)
s := make([]byte, 8)
H.Read(s)
var c ringElement
for i := 256 - p.τ; i < 256; i++ {
j := make([]byte, 1)
H.Read(j)
for j[0] > byte(i) {
H.Read(j)
}
c[i] = c[j[0]]
// c[j] = (1) ^ h[i+τ256], where h are the bits in s in little-endian.
// That is, -1⁰ = 1 if the bit is 0, -1¹ = -1 if it is 1.
bitIdx := i + p.τ - 256
bit := (s[bitIdx/8] >> (bitIdx % 8)) & 1
if bit == 0 {
c[j[0]] = one
} else {
c[j[0]] = minusOne
}
}
return c
}
// coeffFromHalfByte implements CoeffFromHalfByte from FIPS 204.
//
// It maps a value in [0, 15] to a coefficient in [−η, η]
func coeffFromHalfByte(b byte, p parameters) (fieldElement, bool) {
if b > 15 {
panic("internal error: half-byte out of range")
}
switch p.η {
case 2:
// Return z = 2 (b mod 5), which maps from
//
// b = ( 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 )
//
// to
//
// b%5 = ( 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0 )
//
// to
//
// z = ( -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2 )
//
if b > 14 {
return 0, false
}
// Calculate b % 5 with Barrett reduction, to avoid a potentially
// variable-time division.
const barrettMultiplier = 0x3334 // ⌈2¹⁶ / 5⌉
const barrettShift = 16 // log₂(2¹⁶)
quotient := (uint32(b) * barrettMultiplier) >> barrettShift
remainder := uint32(b) - quotient*5
return fieldSubToMontgomery(2, remainder), true
case 4:
// Return z = 4 b, which maps from
//
// b = ( 8, 7, 6, 5, 4, 3, 2, 1, 0 )
//
// to
//
// z = ( 4, -3, -2, -1, 0, 1, 2, 3, 4 )
//
if b > 8 {
return 0, false
}
return fieldSubToMontgomery(4, uint32(b)), true
default:
panic("internal error: unsupported η")
}
}
// power2Round implements Power2Round from FIPS 204.
//
// It separates the bottom d = 13 bits of each 23-bit coefficient, rounding the
// high part based on the low part, and correcting the low part accordingly.
func power2Round(r fieldElement) (hi uint16, lo fieldElement) {
rr := fieldFromMontgomery(r)
// Add 2¹² - 1 to round up r1 by one if r0 > 2¹².
// r is at most 2²³ - 2¹³ + 1, so rr + (2¹² - 1) won't overflow 23 bits.
r1 := rr + 1<<12 - 1
r1 >>= 13
// r1 <= 2¹⁰ - 1
// r1 * 2¹³ <= (2¹⁰ - 1) * 2¹³ = 2²³ - 2¹³ < q
r0 := fieldSubToMontgomery(rr, r1<<13)
return uint16(r1), r0
}
// highBits implements HighBits from FIPS 204.
func highBits(r ringElement, p parameters) [n]byte {
var w [n]byte
switch p.γ2 {
case 32:
for i := range n {
w[i] = highBits32(fieldFromMontgomery(r[i]))
}
case 88:
for i := range n {
w[i] = highBits88(fieldFromMontgomery(r[i]))
}
default:
panic("mldsa: internal error: unsupported γ2")
}
return w
}
// useHint implements UseHint from FIPS 204.
//
// It is not constant-time.
func useHint(r ringElement, h [n]byte, p parameters) [n]byte {
var w [n]byte
switch p.γ2 {
case 32:
for i := range n {
w[i] = useHint32(r[i], h[i])
}
case 88:
for i := range n {
w[i] = useHint88(r[i], h[i])
}
default:
panic("mldsa: internal error: unsupported γ2")
}
return w
}
// makeHint implements MakeHint from FIPS 204.
func makeHint(ct0, w, cs2 ringElement, p parameters) (h [n]byte, count1s int) {
switch p.γ2 {
case 32:
for i := range n {
h[i] = makeHint32(ct0[i], w[i], cs2[i])
count1s += int(h[i])
}
case 88:
for i := range n {
h[i] = makeHint88(ct0[i], w[i], cs2[i])
count1s += int(h[i])
}
default:
panic("mldsa: internal error: unsupported γ2")
}
return h, count1s
}
// highBits32 implements HighBits from FIPS 204 for γ2 = (q - 1) / 32.
func highBits32(x uint32) byte {
// The implementation is based on the reference implementation and on
// BoringSSL. There are exhaustive tests in TestDecompose that compare it to
// a straightforward implementation of Decompose from the spec, so for our
// purposes it only has to work and be constant-time.
r1 := (x + 127) >> 7
r1 = (r1*1025 + (1 << 21)) >> 22
r1 &= 0b1111
return byte(r1)
}
// decompose32 implements Decompose from FIPS 204 for γ2 = (q - 1) / 32.
//
// r1 is in [0, 15].
func decompose32(r fieldElement) (r1 byte, r0 int32) {
x := fieldFromMontgomery(r)
r1 = highBits32(x)
// r - r1 * (2 * γ2) mod± q
r0 = int32(x) - int32(r1)*2*(q-1)/32
r0 = constantTimeSelectLessOrEqual(q/2+1, r0, r0-q, r0)
return r1, r0
}
// useHint32 implements UseHint from FIPS 204 for γ2 = (q - 1) / 32.
func useHint32(r fieldElement, hint byte) byte {
const m = 16 // (q 1) / (2 * γ2)
r1, r0 := decompose32(r)
if hint == 1 {
if r0 > 0 {
r1 = (r1 + 1) % m
} else {
// Underflow is safe, because it operates modulo 256 (since the type
// is byte), which is a multiple of m.
r1 = (r1 - 1) % m
}
}
return r1
}
// makeHint32 implements MakeHint from FIPS 204 for γ2 = (q - 1) / 32.
func makeHint32(ct0, w, cs2 fieldElement) byte {
// v1 = HighBits(r + z) = HighBits(w - cs2 + ct0 - ct0) = HighBits(w - cs2)
rPlusZ := fieldSub(w, cs2)
v1 := highBits32(fieldFromMontgomery(rPlusZ))
// r1 = HighBits(r) = HighBits(w - cs2 + ct0)
r1 := highBits32(fieldFromMontgomery(fieldAdd(rPlusZ, ct0)))
return byte(constanttime.ByteEq(v1, r1) ^ 1)
}
// highBits88 implements HighBits from FIPS 204 for γ2 = (q - 1) / 88.
func highBits88(x uint32) byte {
// Like highBits32, this is exhaustively tested in TestDecompose.
r1 := (x + 127) >> 7
r1 = (r1*11275 + (1 << 23)) >> 24
r1 = constantTimeSelectEqual(r1, 44, 0, r1)
return byte(r1)
}
// decompose88 implements Decompose from FIPS 204 for γ2 = (q - 1) / 88.
//
// r1 is in [0, 43].
func decompose88(r fieldElement) (r1 byte, r0 int32) {
x := fieldFromMontgomery(r)
r1 = highBits88(x)
// r - r1 * (2 * γ2) mod± q
r0 = int32(x) - int32(r1)*2*(q-1)/88
r0 = constantTimeSelectLessOrEqual(q/2+1, r0, r0-q, r0)
return r1, r0
}
// useHint88 implements UseHint from FIPS 204 for γ2 = (q - 1) / 88.
func useHint88(r fieldElement, hint byte) byte {
const m = 44 // (q 1) / (2 * γ2)
r1, r0 := decompose88(r)
if hint == 1 {
if r0 > 0 {
// (r1 + 1) mod m, for r1 in [0, m-1]
if r1 == m-1 {
r1 = 0
} else {
r1++
}
} else {
// (r1 - 1) % m, for r1 in [0, m-1]
if r1 == 0 {
r1 = m - 1
} else {
r1--
}
}
}
return r1
}
// makeHint88 implements MakeHint from FIPS 204 for γ2 = (q - 1) / 88.
func makeHint88(ct0, w, cs2 fieldElement) byte {
// Same as makeHint32 above.
rPlusZ := fieldSub(w, cs2)
v1 := highBits88(fieldFromMontgomery(rPlusZ))
r1 := highBits88(fieldFromMontgomery(fieldAdd(rPlusZ, ct0)))
return byte(constanttime.ByteEq(v1, r1) ^ 1)
}
// bitPack implements BitPack(r mod± q, γ₁-1, γ₁), which packs the centered
// coefficients of r into little-endian γ1+1-bit chunks. It appends to buf.
//
// It must only be applied to r with coefficients in [−γ₁+1, γ₁], as
// guaranteed by the rejection conditions in Sign.
func bitPack(b []byte, r ringElement, p parameters) []byte {
switch p.γ1 {
case 17:
return bitPack18(b, r)
case 19:
return bitPack20(b, r)
default:
panic("mldsa: internal error: unsupported γ1")
}
}
// bitPack18 implements BitPack(r mod± q, 2¹⁷-1, 2¹⁷), which packs the centered
// coefficients of r into little-endian 18-bit chunks. It appends to buf.
//
// It must only be applied to r with coefficients in [2¹⁷+1, 2¹⁷], as
// guaranteed by the rejection conditions in Sign.
func bitPack18(buf []byte, r ringElement) []byte {
out, v := sliceForAppend(buf, 18*n/8)
const b = 1 << 17
for i := 0; i < n; i += 4 {
// b - [2¹⁷+1, 2¹⁷] = [0, 2²⁸-1]
w0 := b - fieldCenteredMod(r[i])
v[0] = byte(w0 << 0)
v[1] = byte(w0 >> 8)
v[2] = byte(w0 >> 16)
w1 := b - fieldCenteredMod(r[i+1])
v[2] |= byte(w1 << 2)
v[3] = byte(w1 >> 6)
v[4] = byte(w1 >> 14)
w2 := b - fieldCenteredMod(r[i+2])
v[4] |= byte(w2 << 4)
v[5] = byte(w2 >> 4)
v[6] = byte(w2 >> 12)
w3 := b - fieldCenteredMod(r[i+3])
v[6] |= byte(w3 << 6)
v[7] = byte(w3 >> 2)
v[8] = byte(w3 >> 10)
v = v[4*18/8:]
}
return out
}
// bitPack20 implements BitPack(r mod± q, 2¹⁹-1, 2¹⁹), which packs the centered
// coefficients of r into little-endian 20-bit chunks. It appends to buf.
//
// It must only be applied to r with coefficients in [2¹⁹+1, 2¹⁹], as
// guaranteed by the rejection conditions in Sign.
func bitPack20(buf []byte, r ringElement) []byte {
out, v := sliceForAppend(buf, 20*n/8)
const b = 1 << 19
for i := 0; i < n; i += 2 {
// b - [2¹⁹+1, 2¹⁹] = [0, 2²⁰-1]
w0 := b - fieldCenteredMod(r[i])
v[0] = byte(w0 << 0)
v[1] = byte(w0 >> 8)
v[2] = byte(w0 >> 16)
w1 := b - fieldCenteredMod(r[i+1])
v[2] |= byte(w1 << 4)
v[3] = byte(w1 >> 4)
v[4] = byte(w1 >> 12)
v = v[2*20/8:]
}
return out
}
// bitUnpack implements BitUnpack(v, 2^γ1-1, 2^γ1), which unpacks each γ1+1 bits
// in little-endian into a coefficient in [-2^γ1+1, 2^γ1].
func bitUnpack(v []byte, p parameters) ringElement {
switch p.γ1 {
case 17:
return bitUnpack18(v)
case 19:
return bitUnpack20(v)
default:
panic("mldsa: internal error: unsupported γ1")
}
}
// bitUnpack18 implements BitUnpack(v, 2¹⁷-1, 2¹⁷), which unpacks each 18 bits
// in little-endian into a coefficient in [-2¹⁷+1, 2¹⁷].
func bitUnpack18(v []byte) ringElement {
if len(v) != 18*n/8 {
panic("mldsa: internal error: invalid bitUnpack18 input length")
}
const b = 1 << 17
const mask18 = 1<<18 - 1
var r ringElement
for i := 0; i < n; i += 4 {
w0 := uint32(v[0]) | uint32(v[1])<<8 | uint32(v[2])<<16
r[i+0] = fieldSubToMontgomery(b, w0&mask18)
w1 := uint32(v[2])>>2 | uint32(v[3])<<6 | uint32(v[4])<<14
r[i+1] = fieldSubToMontgomery(b, w1&mask18)
w2 := uint32(v[4])>>4 | uint32(v[5])<<4 | uint32(v[6])<<12
r[i+2] = fieldSubToMontgomery(b, w2&mask18)
w3 := uint32(v[6])>>6 | uint32(v[7])<<2 | uint32(v[8])<<10
r[i+3] = fieldSubToMontgomery(b, w3&mask18)
v = v[4*18/8:]
}
return r
}
// bitUnpack20 implements BitUnpack(v, 2¹⁹-1, 2¹⁹), which unpacks each 20 bits
// in little-endian into a coefficient in [-2¹⁹+1, 2¹⁹].
func bitUnpack20(v []byte) ringElement {
if len(v) != 20*n/8 {
panic("mldsa: internal error: invalid bitUnpack20 input length")
}
const b = 1 << 19
const mask20 = 1<<20 - 1
var r ringElement
for i := 0; i < n; i += 2 {
w0 := uint32(v[0]) | uint32(v[1])<<8 | uint32(v[2])<<16
r[i+0] = fieldSubToMontgomery(b, w0&mask20)
w1 := uint32(v[2])>>4 | uint32(v[3])<<4 | uint32(v[4])<<12
r[i+1] = fieldSubToMontgomery(b, w1&mask20)
v = v[2*20/8:]
}
return r
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// constantTimeSelectLessOrEqual returns yes if a <= b, no otherwise, in constant time.
func constantTimeSelectLessOrEqual(a, b, yes, no int32) int32 {
return int32(constanttime.Select(constanttime.LessOrEq(int(a), int(b)), int(yes), int(no)))
}
// constantTimeSelectEqual returns yes if a == b, no otherwise, in constant time.
func constantTimeSelectEqual(a, b, yes, no uint32) uint32 {
return uint32(constanttime.Select(constanttime.Eq(int32(a), int32(b)), int(yes), int(no)))
}
// constantTimeAbs returns the absolute value of x in constant time.
func constantTimeAbs(x int32) uint32 {
return uint32(constantTimeSelectLessOrEqual(0, x, x, -x))
}

View File

@@ -0,0 +1,370 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"math/big"
"testing"
)
type interestingValue struct {
v uint32
m fieldElement
}
// q is large enough that we can't exhaustively test all q × q inputs, so when
// we have two inputs we test [0, q) on one side and a set of interesting
// values on the other side.
func interestingValues() []interestingValue {
if testing.Short() {
return []interestingValue{{v: q - 1, m: minusOne}}
}
var values []interestingValue
for _, v := range []uint32{
0,
1,
2,
3,
q - 3,
q - 2,
q - 1,
q / 2,
(q + 1) / 2,
} {
m, _ := fieldToMontgomery(v)
values = append(values, interestingValue{v: v, m: m})
// Also test values that have an interesting Montgomery representation.
values = append(values, interestingValue{
v: fieldFromMontgomery(fieldElement(v)), m: fieldElement(v)})
}
return values
}
func TestToFromMontgomery(t *testing.T) {
for a := range uint32(q) {
m, err := fieldToMontgomery(a)
if err != nil {
t.Fatalf("fieldToMontgomery(%d) returned error: %v", a, err)
}
exp := fieldElement((uint64(a) * R) % q)
if m != exp {
t.Fatalf("fieldToMontgomery(%d) = %d, expected %d", a, m, exp)
}
got := fieldFromMontgomery(m)
if got != a {
t.Fatalf("fieldFromMontgomery(fieldToMontgomery(%d)) = %d, expected %d", a, got, a)
}
}
}
func TestFieldAdd(t *testing.T) {
t.Parallel()
for _, a := range interestingValues() {
for b := range fieldElement(q) {
got := fieldAdd(a.m, b)
exp := (a.m + b) % q
if got != exp {
t.Fatalf("%d + %d = %d, expected %d", a, b, got, exp)
}
}
}
}
func TestFieldSub(t *testing.T) {
t.Parallel()
for _, a := range interestingValues() {
for b := range fieldElement(q) {
got := fieldSub(a.m, b)
exp := (a.m + q - b) % q
if got != exp {
t.Fatalf("%d - %d = %d, expected %d", a, b, got, exp)
}
}
}
}
func TestFieldSubToMontgomery(t *testing.T) {
t.Parallel()
for _, a := range interestingValues() {
for b := range uint32(q) {
got := fieldSubToMontgomery(a.v, b)
diff := (a.v + q - b) % q
exp := fieldElement((uint64(diff) * R) % q)
if got != exp {
t.Fatalf("fieldSubToMontgomery(%d, %d) = %d, expected %d", a.v, b, got, exp)
}
}
}
}
func TestFieldReduceOnce(t *testing.T) {
t.Parallel()
for a := range uint32(2 * q) {
got := fieldReduceOnce(a)
var exp uint32
if a < q {
exp = a
} else {
exp = a - q
}
if uint32(got) != exp {
t.Fatalf("fieldReduceOnce(%d) = %d, expected %d", a, got, exp)
}
}
}
func TestFieldMul(t *testing.T) {
t.Parallel()
for _, a := range interestingValues() {
for b := range fieldElement(q) {
got := fieldFromMontgomery(fieldMontgomeryMul(a.m, b))
exp := uint32((uint64(a.v) * uint64(fieldFromMontgomery(b))) % q)
if got != exp {
t.Fatalf("%d * %d = %d, expected %d", a, b, got, exp)
}
}
}
}
func TestFieldToMontgomeryOverflow(t *testing.T) {
// fieldToMontgomery should reject inputs ≥ q.
inputs := []uint32{
q,
q + 1,
q + 2,
1<<23 - 1,
1 << 23,
q + 1<<23,
q + 1<<31,
^uint32(0),
}
for _, in := range inputs {
if _, err := fieldToMontgomery(in); err == nil {
t.Fatalf("fieldToMontgomery(%d) did not return an error", in)
}
}
}
func TestFieldMulSub(t *testing.T) {
for _, a := range interestingValues() {
for _, b := range interestingValues() {
for _, c := range interestingValues() {
got := fieldFromMontgomery(fieldMontgomeryMulSub(a.m, b.m, c.m))
exp := uint32((uint64(a.v) * (uint64(b.v) + q - uint64(c.v))) % q)
if got != exp {
t.Fatalf("%d * (%d - %d) = %d, expected %d", a.v, b.v, c.v, got, exp)
}
}
}
}
}
func TestFieldAddMul(t *testing.T) {
for _, a := range interestingValues() {
for _, b := range interestingValues() {
for _, c := range interestingValues() {
for _, d := range interestingValues() {
got := fieldFromMontgomery(fieldMontgomeryAddMul(a.m, b.m, c.m, d.m))
exp := uint32((uint64(a.v)*uint64(b.v) + uint64(c.v)*uint64(d.v)) % q)
if got != exp {
t.Fatalf("%d + %d * %d = %d, expected %d", a.v, b.v, c.v, got, exp)
}
}
}
}
}
}
func BitRev8(n uint8) uint8 {
var r uint8
r |= n >> 7 & 0b0000_0001
r |= n >> 5 & 0b0000_0010
r |= n >> 3 & 0b0000_0100
r |= n >> 1 & 0b0000_1000
r |= n << 1 & 0b0001_0000
r |= n << 3 & 0b0010_0000
r |= n << 5 & 0b0100_0000
r |= n << 7 & 0b1000_0000
return r
}
func CenteredMod(x, m uint32) int32 {
x = x % m
if x > m/2 {
return int32(x) - int32(m)
}
return int32(x)
}
func reduceModQ(x int32) uint32 {
x %= q
if x < 0 {
return uint32(x + q)
}
return uint32(x)
}
func TestCenteredMod(t *testing.T) {
for x := range uint32(q * 2) {
got := CenteredMod(uint32(x), q)
if reduceModQ(got) != (x % q) {
t.Fatalf("CenteredMod(%d) = %d, which is not congruent to %d mod %d", x, got, x, q)
}
}
for x := range uint32(q) {
r, _ := fieldToMontgomery(x)
got := fieldCenteredMod(r)
exp := CenteredMod(x, q)
if got != exp {
t.Fatalf("fieldCenteredMod(%d) = %d, expected %d", x, got, exp)
}
}
}
func TestInfinityNorm(t *testing.T) {
for x := range uint32(q) {
r, _ := fieldToMontgomery(x)
got := fieldInfinityNorm(r)
exp := CenteredMod(x, q)
if exp < 0 {
exp = -exp
}
if got != uint32(exp) {
t.Fatalf("fieldInfinityNorm(%d) = %d, expected %d", x, got, exp)
}
}
}
func TestConstants(t *testing.T) {
if fieldFromMontgomery(one) != 1 {
t.Errorf("one constant incorrect")
}
if fieldFromMontgomery(minusOne) != q-1 {
t.Errorf("minusOne constant incorrect")
}
if fieldInfinityNorm(one) != 1 {
t.Errorf("one infinity norm incorrect")
}
if fieldInfinityNorm(minusOne) != 1 {
t.Errorf("minusOne infinity norm incorrect")
}
if PublicKeySize44 != pubKeySize(params44) {
t.Errorf("PublicKeySize44 constant incorrect")
}
if PublicKeySize65 != pubKeySize(params65) {
t.Errorf("PublicKeySize65 constant incorrect")
}
if PublicKeySize87 != pubKeySize(params87) {
t.Errorf("PublicKeySize87 constant incorrect")
}
if SignatureSize44 != sigSize(params44) {
t.Errorf("SignatureSize44 constant incorrect")
}
if SignatureSize65 != sigSize(params65) {
t.Errorf("SignatureSize65 constant incorrect")
}
if SignatureSize87 != sigSize(params87) {
t.Errorf("SignatureSize87 constant incorrect")
}
}
func TestPower2Round(t *testing.T) {
t.Parallel()
for x := range uint32(q) {
rr, _ := fieldToMontgomery(x)
t1, t0 := power2Round(rr)
hi, err := fieldToMontgomery(uint32(t1) << 13)
if err != nil {
t.Fatalf("power2Round(%d): failed to convert high part to Montgomery: %v", x, err)
}
if r := fieldFromMontgomery(fieldAdd(hi, t0)); r != x {
t.Fatalf("power2Round(%d) = (%d, %d), which reconstructs to %d, expected %d", x, t1, t0, r, x)
}
}
}
func SpecDecompose(rr fieldElement, p parameters) (R1 uint32, R0 int32) {
r := fieldFromMontgomery(rr)
if (q-1)%p.γ2 != 0 {
panic("mldsa: internal error: unsupported denγ2")
}
γ2 := (q - 1) / uint32(p.γ2)
r0 := CenteredMod(r, 2*γ2)
diff := int32(r) - r0
if diff == q-1 {
r0 = r0 - 1
return 0, r0
} else {
if diff < 0 || uint32(diff)%γ2 != 0 {
panic("mldsa: internal error: invalid decomposition")
}
r1 := uint32(diff) / (2 * γ2)
return r1, r0
}
}
func TestDecompose(t *testing.T) {
t.Run("ML-DSA-44", func(t *testing.T) {
testDecompose(t, params44)
})
t.Run("ML-DSA-65,87", func(t *testing.T) {
testDecompose(t, params65)
})
}
func testDecompose(t *testing.T, p parameters) {
t.Parallel()
for x := range uint32(q) {
rr, _ := fieldToMontgomery(x)
r1, r0 := SpecDecompose(rr, p)
// Check that SpecDecompose is correct.
// r ≡ r1 * (2 * γ2) + r0 mod q
γ2 := (q - 1) / uint32(p.γ2)
reconstructed := reduceModQ(int32(r1*2*γ2) + r0)
if reconstructed != x {
t.Fatalf("SpecDecompose(%d) = (%d, %d), which reconstructs to %d, expected %d", x, r1, r0, reconstructed, x)
}
var gotR1 byte
var gotR0 int32
switch p.γ2 {
case 88:
gotR1, gotR0 = decompose88(rr)
if gotR1 > 43 {
t.Fatalf("decompose88(%d) returned r1 = %d, which is out of range", x, gotR1)
}
case 32:
gotR1, gotR0 = decompose32(rr)
if gotR1 > 15 {
t.Fatalf("decompose32(%d) returned r1 = %d, which is out of range", x, gotR1)
}
default:
t.Fatalf("unsupported denγ2: %d", p.γ2)
}
if uint32(gotR1) != r1 {
t.Fatalf("highBits(%d) = %d, expected %d", x, gotR1, r1)
}
if gotR0 != r0 {
t.Fatalf("lowBits(%d) = %d, expected %d", x, gotR0, r0)
}
}
}
func TestZetas(t *testing.T) {
ζ := big.NewInt(1753)
q := big.NewInt(q)
for k, zeta := range zetas {
// ζ^BitRev₈(k) mod q
exp := new(big.Int).Exp(ζ, big.NewInt(int64(BitRev8(uint8(k)))), q)
got := fieldFromMontgomery(zeta)
if big.NewInt(int64(got)).Cmp(exp) != 0 {
t.Errorf("zetas[%d] = %v, expected %v", k, got, exp)
}
}
}

View File

@@ -0,0 +1,782 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"bytes"
"crypto/internal/fips140"
"crypto/internal/fips140/drbg"
"crypto/internal/fips140/sha3"
"crypto/internal/fips140/subtle"
"crypto/internal/fips140deps/byteorder"
"errors"
)
type parameters struct {
k, l int // dimensions of A
η int // bound for secret coefficients
γ1 int // log₂(γ₁), where [-γ₁+1, γ₁] is the bound of y
γ2 int // denominator of γ₂ = (q - 1) / γ2
λ int // collison strength
τ int // number of non-zero coefficients in challenge
ω int // max number of hints in MakeHint
}
var (
params44 = parameters{k: 4, l: 4, η: 2, γ1: 17, γ2: 88, λ: 128, τ: 39, ω: 80}
params65 = parameters{k: 6, l: 5, η: 4, γ1: 19, γ2: 32, λ: 192, τ: 49, ω: 55}
params87 = parameters{k: 8, l: 7, η: 2, γ1: 19, γ2: 32, λ: 256, τ: 60, ω: 75}
)
func pubKeySize(p parameters) int {
// ρ + k × n × 10-bit coefficients of t₁
return 32 + p.k*n*10/8
}
func sigSize(p parameters) int {
// challenge + l × n × (γ₁+1)-bit coefficients of z + hint
return (p.λ / 4) + p.l*n*(p.γ1+1)/8 + p.ω + p.k
}
const (
PrivateKeySize = 32
PublicKeySize44 = 32 + 4*n*10/8
PublicKeySize65 = 32 + 6*n*10/8
PublicKeySize87 = 32 + 8*n*10/8
SignatureSize44 = 128/4 + 4*n*(17+1)/8 + 80 + 4
SignatureSize65 = 192/4 + 5*n*(19+1)/8 + 55 + 6
SignatureSize87 = 256/4 + 7*n*(19+1)/8 + 75 + 8
)
const maxK, maxL, maxλ, maxγ1 = 8, 7, 256, 19
const maxPubKeySize = PublicKeySize87
type PrivateKey struct {
seed [32]byte
pub PublicKey
s1 [maxL]nttElement
s2 [maxK]nttElement
t0 [maxK]nttElement
k [32]byte
}
func (priv *PrivateKey) Equal(x *PrivateKey) bool {
return priv.pub.p == x.pub.p && subtle.ConstantTimeCompare(priv.seed[:], x.seed[:]) == 1
}
func (priv *PrivateKey) Bytes() []byte {
seed := priv.seed
return seed[:]
}
func (priv *PrivateKey) PublicKey() *PublicKey {
// Note that this is likely to keep the entire PrivateKey reachable for
// the lifetime of the PublicKey, which may be undesirable.
return &priv.pub
}
type PublicKey struct {
raw [maxPubKeySize]byte
p parameters
a [maxK * maxL]nttElement
t1 [maxK]nttElement // NTT(t₁ ⋅ 2ᵈ)
tr [64]byte // public key hash
}
func (pub *PublicKey) Equal(x *PublicKey) bool {
size := pubKeySize(pub.p)
return pub.p == x.p && subtle.ConstantTimeCompare(pub.raw[:size], x.raw[:size]) == 1
}
func (pub *PublicKey) Bytes() []byte {
size := pubKeySize(pub.p)
return bytes.Clone(pub.raw[:size])
}
func (pub *PublicKey) Parameters() string {
switch pub.p {
case params44:
return "ML-DSA-44"
case params65:
return "ML-DSA-65"
case params87:
return "ML-DSA-87"
default:
panic("mldsa: internal error: unknown parameters")
}
}
func GenerateKey44() *PrivateKey {
fipsSelfTest()
fips140.RecordApproved()
var seed [32]byte
drbg.Read(seed[:])
priv := newPrivateKey(&seed, params44)
fipsPCT(priv)
return priv
}
func GenerateKey65() *PrivateKey {
fipsSelfTest()
fips140.RecordApproved()
var seed [32]byte
drbg.Read(seed[:])
priv := newPrivateKey(&seed, params65)
fipsPCT(priv)
return priv
}
func GenerateKey87() *PrivateKey {
fipsSelfTest()
fips140.RecordApproved()
var seed [32]byte
drbg.Read(seed[:])
priv := newPrivateKey(&seed, params87)
fipsPCT(priv)
return priv
}
var errInvalidSeedLength = errors.New("mldsa: invalid seed length")
func NewPrivateKey44(seed []byte) (*PrivateKey, error) {
fipsSelfTest()
fips140.RecordApproved()
if len(seed) != 32 {
return nil, errInvalidSeedLength
}
return newPrivateKey((*[32]byte)(seed), params44), nil
}
func NewPrivateKey65(seed []byte) (*PrivateKey, error) {
fipsSelfTest()
fips140.RecordApproved()
if len(seed) != 32 {
return nil, errInvalidSeedLength
}
return newPrivateKey((*[32]byte)(seed), params65), nil
}
func NewPrivateKey87(seed []byte) (*PrivateKey, error) {
fipsSelfTest()
fips140.RecordApproved()
if len(seed) != 32 {
return nil, errInvalidSeedLength
}
return newPrivateKey((*[32]byte)(seed), params87), nil
}
func newPrivateKey(seed *[32]byte, p parameters) *PrivateKey {
k, l := p.k, p.l
priv := &PrivateKey{pub: PublicKey{p: p}}
priv.seed = *seed
ξ := sha3.NewShake256()
ξ.Write(seed[:])
ξ.Write([]byte{byte(k), byte(l)})
ρ, ρs := make([]byte, 32), make([]byte, 64)
ξ.Read(ρ)
ξ.Read(ρs)
ξ.Read(priv.k[:])
A := priv.pub.a[:k*l]
computeMatrixA(A, ρ, p)
s1 := priv.s1[:l]
for r := range l {
s1[r] = ntt(sampleBoundedPoly(ρs, byte(r), p))
}
s2 := priv.s2[:k]
for r := range k {
s2[r] = ntt(sampleBoundedPoly(ρs, byte(l+r), p))
}
// ˆt = Â ∘ ŝ₁ + ŝ₂
tHat := make([]nttElement, k, maxK)
for i := range tHat {
tHat[i] = s2[i]
for j := range s1 {
tHat[i] = polyAdd(tHat[i], nttMul(A[i*l+j], s1[j]))
}
}
// t = NTT⁻¹(ˆt)
t := make([]ringElement, k, maxK)
for i := range tHat {
t[i] = inverseNTT(tHat[i])
}
// (t₁, _) = Power2Round(t)
// (_, ˆt₀) = NTT(Power2Round(t))
t1, t0 := make([][n]uint16, k, maxK), priv.t0[:k]
for i := range t {
var w ringElement
for j := range t[i] {
t1[i][j], w[j] = power2Round(t[i][j])
}
t0[i] = ntt(w)
}
// The computations below (and their storage in the PrivateKey struct) are
// not strictly necessary and could be deferred to PrivateKey.PublicKey().
// That would require keeping or re-deriving ρ and t/t1, though.
pk := pkEncode(priv.pub.raw[:0], ρ, t1, p)
priv.pub.tr = computePublicKeyHash(pk)
computeT1Hat(priv.pub.t1[:k], t1) // NTT(t₁ ⋅ 2ᵈ)
return priv
}
func computeMatrixA(A []nttElement, ρ []byte, p parameters) {
k, l := p.k, p.l
for r := range k {
for s := range l {
A[r*l+s] = sampleNTT(ρ, byte(s), byte(r))
}
}
}
func computePublicKeyHash(pk []byte) [64]byte {
H := sha3.NewShake256()
H.Write(pk)
var tr [64]byte
H.Read(tr[:])
return tr
}
func computeT1Hat(t1Hat []nttElement, t1 [][n]uint16) {
for i := range t1 {
var w ringElement
for j := range t1[i] {
// t₁ <= 2¹⁰ - 1
// t₁ ⋅ 2ᵈ <= 2ᵈ(2¹⁰ - 1) = 2²³ - 2¹³ < q = 2²³ - 2¹³ + 1
z, _ := fieldToMontgomery(uint32(t1[i][j]) << 13)
w[j] = z
}
t1Hat[i] = ntt(w)
}
}
func pkEncode(buf []byte, ρ []byte, t1 [][n]uint16, p parameters) []byte {
pk := append(buf, ρ...)
for _, w := range t1[:p.k] {
// Encode four at a time into 4 * 10 bits = 5 bytes.
for i := 0; i < n; i += 4 {
c0 := w[i]
c1 := w[i+1]
c2 := w[i+2]
c3 := w[i+3]
b0 := byte(c0 >> 0)
b1 := byte((c0 >> 8) | (c1 << 2))
b2 := byte((c1 >> 6) | (c2 << 4))
b3 := byte((c2 >> 4) | (c3 << 6))
b4 := byte(c3 >> 2)
pk = append(pk, b0, b1, b2, b3, b4)
}
}
return pk
}
func pkDecode(pk []byte, t1 [][n]uint16, p parameters) (ρ []byte, err error) {
if len(pk) != pubKeySize(p) {
return nil, errInvalidPublicKeyLength
}
ρ, pk = pk[:32], pk[32:]
for r := range t1 {
// Decode four at a time from 4 * 10 bits = 5 bytes.
for i := 0; i < n; i += 4 {
b0, b1, b2, b3, b4 := pk[0], pk[1], pk[2], pk[3], pk[4]
t1[r][i+0] = uint16(b0>>0) | uint16(b1&0b0000_0011)<<8
t1[r][i+1] = uint16(b1>>2) | uint16(b2&0b0000_1111)<<6
t1[r][i+2] = uint16(b2>>4) | uint16(b3&0b0011_1111)<<4
t1[r][i+3] = uint16(b3>>6) | uint16(b4&0b1111_1111)<<2
pk = pk[5:]
}
}
return ρ, nil
}
var errInvalidPublicKeyLength = errors.New("mldsa: invalid public key length")
func NewPublicKey44(pk []byte) (*PublicKey, error) {
return newPublicKey(pk, params44)
}
func NewPublicKey65(pk []byte) (*PublicKey, error) {
return newPublicKey(pk, params65)
}
func NewPublicKey87(pk []byte) (*PublicKey, error) {
return newPublicKey(pk, params87)
}
func newPublicKey(pk []byte, p parameters) (*PublicKey, error) {
k, l := p.k, p.l
t1 := make([][n]uint16, k, maxK)
ρ, err := pkDecode(pk, t1, p)
if err != nil {
return nil, err
}
pub := &PublicKey{p: p}
copy(pub.raw[:], pk)
computeMatrixA(pub.a[:k*l], ρ, p)
pub.tr = computePublicKeyHash(pk)
computeT1Hat(pub.t1[:k], t1) // NTT(t₁ ⋅ 2ᵈ)
return pub, nil
}
var (
errContextTooLong = errors.New("mldsa: context too long")
errMessageHashLength = errors.New("mldsa: invalid message hash length")
errRandomLength = errors.New("mldsa: invalid random length")
)
func Sign(priv *PrivateKey, msg []byte, context string) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
var random [32]byte
drbg.Read(random[:])
μ, err := computeMessageHash(priv.pub.tr[:], msg, context)
if err != nil {
return nil, err
}
return signInternal(priv, &μ, &random), nil
}
func SignDeterministic(priv *PrivateKey, msg []byte, context string) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
var random [32]byte
μ, err := computeMessageHash(priv.pub.tr[:], msg, context)
if err != nil {
return nil, err
}
return signInternal(priv, &μ, &random), nil
}
func TestingOnlySignWithRandom(priv *PrivateKey, msg []byte, context string, random []byte) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
μ, err := computeMessageHash(priv.pub.tr[:], msg, context)
if err != nil {
return nil, err
}
if len(random) != 32 {
return nil, errRandomLength
}
return signInternal(priv, &μ, (*[32]byte)(random)), nil
}
func SignExternalMu(priv *PrivateKey, μ []byte) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
var random [32]byte
drbg.Read(random[:])
if len(μ) != 64 {
return nil, errMessageHashLength
}
return signInternal(priv, (*[64]byte)(μ), &random), nil
}
func SignExternalMuDeterministic(priv *PrivateKey, μ []byte) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
var random [32]byte
if len(μ) != 64 {
return nil, errMessageHashLength
}
return signInternal(priv, (*[64]byte)(μ), &random), nil
}
func TestingOnlySignExternalMuWithRandom(priv *PrivateKey, μ []byte, random []byte) ([]byte, error) {
fipsSelfTest()
fips140.RecordApproved()
if len(μ) != 64 {
return nil, errMessageHashLength
}
if len(random) != 32 {
return nil, errRandomLength
}
return signInternal(priv, (*[64]byte)(μ), (*[32]byte)(random)), nil
}
func computeMessageHash(tr []byte, msg []byte, context string) ([64]byte, error) {
if len(context) > 255 {
return [64]byte{}, errContextTooLong
}
H := sha3.NewShake256()
H.Write(tr)
H.Write([]byte{0}) // ML-DSA / HashML-DSA domain separator
H.Write([]byte{byte(len(context))})
H.Write([]byte(context))
H.Write(msg)
var μ [64]byte
H.Read(μ[:])
return μ, nil
}
func signInternal(priv *PrivateKey, μ *[64]byte, random *[32]byte) []byte {
p, k, l := priv.pub.p, priv.pub.p.k, priv.pub.p.l
A, s1, s2, t0 := priv.pub.a[:k*l], priv.s1[:l], priv.s2[:k], priv.t0[:k]
β := p.τ * p.η
γ1 := uint32(1 << p.γ1)
γ := γ1 - uint32(β)
γ2 := (q - 1) / uint32(p.γ2)
γ := γ2 - uint32(β)
H := sha3.NewShake256()
H.Write(priv.k[:])
H.Write(random[:])
H.Write(μ[:])
nonce := make([]byte, 64)
H.Read(nonce)
κ := 0
sign:
for {
// Main rejection sampling loop. Note that leaking rejected signatures
// leaks information about the private key. However, as explained in
// https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
// Section 5.5, we are free to leak rejected ch values, as well as which
// check causes the rejection and which coefficient failed the check
// (but not the value or sign of the coefficient).
y := make([]ringElement, l, maxL)
for r := range y {
counter := make([]byte, 2)
byteorder.LEPutUint16(counter, uint16(κ))
κ++
H.Reset()
H.Write(nonce)
H.Write(counter)
v := make([]byte, (p.γ1+1)*n/8, (maxγ1+1)*n/8)
H.Read(v)
y[r] = bitUnpack(v, p)
}
// w = NTT⁻¹(Â ∘ NTT(y))
yHat := make([]nttElement, l, maxL)
for i := range y {
yHat[i] = ntt(y[i])
}
w := make([]ringElement, k, maxK)
for i := range w {
var wHat nttElement
for j := range l {
wHat = polyAdd(wHat, nttMul(A[i*l+j], yHat[j]))
}
w[i] = inverseNTT(wHat)
}
H.Reset()
H.Write(μ[:])
for i := range w {
w1Encode(H, highBits(w[i], p), p)
}
ch := make([]byte, p.λ/4, maxλ/4)
H.Read(ch)
// sampleInBall is not constant time, but see comment above about
// leaking rejected ch values being acceptable.
c := ntt(sampleInBall(ch, p))
cs1 := make([]ringElement, l, maxL)
for i := range cs1 {
cs1[i] = inverseNTT(nttMul(c, s1[i]))
}
cs2 := make([]ringElement, k, maxK)
for i := range cs2 {
cs2[i] = inverseNTT(nttMul(c, s2[i]))
}
z := make([]ringElement, l, maxL)
for i := range y {
z[i] = polyAdd(y[i], cs1[i])
// Reject if ||z||∞ ≥ γ1 β
if coefficientsExceedBound(z[i], γ) {
if testingOnlyRejectionReason != nil {
testingOnlyRejectionReason("z")
}
continue sign
}
}
for i := range w {
r0 := polySub(w[i], cs2[i])
// Reject if ||LowBits(r0)||∞ ≥ γ2 β
if lowBitsExceedBound(r0, γ, p) {
if testingOnlyRejectionReason != nil {
testingOnlyRejectionReason("r0")
}
continue sign
}
}
ct0 := make([]ringElement, k, maxK)
for i := range ct0 {
ct0[i] = inverseNTT(nttMul(c, t0[i]))
// Reject if ||ct0||∞ ≥ γ2
if coefficientsExceedBound(ct0[i], γ2) {
if testingOnlyRejectionReason != nil {
testingOnlyRejectionReason("ct0")
}
continue sign
}
}
count1s := 0
h := make([][n]byte, k, maxK)
for i := range w {
var count int
h[i], count = makeHint(ct0[i], w[i], cs2[i], p)
count1s += count
}
// Reject if number of hints > ω
if count1s > p.ω {
if testingOnlyRejectionReason != nil {
testingOnlyRejectionReason("h")
}
continue sign
}
return sigEncode(ch, z, h, p)
}
}
// testingOnlyRejectionReason is set in tests, to ensure that all rejection
// paths are covered. If not nil, it is called with a string describing the
// reason for rejection: "z", "r0", "ct0", or "h".
var testingOnlyRejectionReason func(reason string)
// w1Encode implements w1Encode from FIPS 204, writing directly into H.
func w1Encode(H *sha3.SHAKE, w [n]byte, p parameters) {
switch p.γ2 {
case 32:
// Coefficients are <= (q 1)/(2γ2) 1 = 15, four bits each.
buf := make([]byte, 4*n/8)
for i := 0; i < n; i += 2 {
b0 := w[i]
b1 := w[i+1]
buf[i/2] = b0 | b1<<4
}
H.Write(buf)
case 88:
// Coefficients are <= (q 1)/(2γ2) 1 = 43, six bits each.
buf := make([]byte, 6*n/8)
for i := 0; i < n; i += 4 {
b0 := w[i]
b1 := w[i+1]
b2 := w[i+2]
b3 := w[i+3]
buf[3*i/4+0] = (b0 >> 0) | (b1 << 6)
buf[3*i/4+1] = (b1 >> 2) | (b2 << 4)
buf[3*i/4+2] = (b2 >> 4) | (b3 << 2)
}
H.Write(buf)
default:
panic("mldsa: internal error: unsupported γ2")
}
}
func coefficientsExceedBound(w ringElement, bound uint32) bool {
// If this function appears in profiles, it might be possible to deduplicate
// the work of fieldFromMontgomery inside fieldInfinityNorm with the
// subsequent encoding of w.
for i := range w {
if fieldInfinityNorm(w[i]) >= bound {
return true
}
}
return false
}
func lowBitsExceedBound(w ringElement, bound uint32, p parameters) bool {
switch p.γ2 {
case 32:
for i := range w {
_, r0 := decompose32(w[i])
if constantTimeAbs(r0) >= bound {
return true
}
}
case 88:
for i := range w {
_, r0 := decompose88(w[i])
if constantTimeAbs(r0) >= bound {
return true
}
}
default:
panic("mldsa: internal error: unsupported γ2")
}
return false
}
var (
errInvalidSignatureLength = errors.New("mldsa: invalid signature length")
errInvalidSignatureCoeffBounds = errors.New("mldsa: invalid signature")
errInvalidSignatureChallenge = errors.New("mldsa: invalid signature")
errInvalidSignatureHintLimits = errors.New("mldsa: invalid signature encoding")
errInvalidSignatureHintIndexOrder = errors.New("mldsa: invalid signature encoding")
errInvalidSignatureHintExtraIndices = errors.New("mldsa: invalid signature encoding")
)
func Verify(pub *PublicKey, msg, sig []byte, context string) error {
fipsSelfTest()
fips140.RecordApproved()
μ, err := computeMessageHash(pub.tr[:], msg, context)
if err != nil {
return err
}
return verifyInternal(pub, &μ, sig)
}
func VerifyExternalMu(pub *PublicKey, μ []byte, sig []byte) error {
fipsSelfTest()
fips140.RecordApproved()
if len(μ) != 64 {
return errMessageHashLength
}
return verifyInternal(pub, (*[64]byte)(μ), sig)
}
func verifyInternal(pub *PublicKey, μ *[64]byte, sig []byte) error {
p, k, l := pub.p, pub.p.k, pub.p.l
t1, A := pub.t1[:k], pub.a[:k*l]
β := p.τ * p.η
γ1 := uint32(1 << p.γ1)
γ := γ1 - uint32(β)
z := make([]ringElement, l, maxL)
h := make([][n]byte, k, maxK)
ch, err := sigDecode(sig, z, h, p)
if err != nil {
return err
}
c := ntt(sampleInBall(ch, p))
// w = Â ∘ NTT(z) NTT(c) ∘ NTT(t₁ ⋅ 2ᵈ)
zHat := make([]nttElement, l, maxL)
for i := range zHat {
zHat[i] = ntt(z[i])
}
w := make([]ringElement, k, maxK)
for i := range w {
var wHat nttElement
for j := range l {
wHat = polyAdd(wHat, nttMul(A[i*l+j], zHat[j]))
}
wHat = polySub(wHat, nttMul(c, t1[i]))
w[i] = inverseNTT(wHat)
}
// Use hints h to compute w₁ from w(approx).
w1 := make([][n]byte, k, maxK)
for i := range w {
w1[i] = useHint(w[i], h[i], p)
}
H := sha3.NewShake256()
H.Write(μ[:])
for i := range w {
w1Encode(H, w1[i], p)
}
computedCH := make([]byte, p.λ/4, maxλ/4)
H.Read(computedCH)
for i := range z {
if coefficientsExceedBound(z[i], γ) {
return errInvalidSignatureCoeffBounds
}
}
if !bytes.Equal(ch, computedCH) {
return errInvalidSignatureChallenge
}
return nil
}
func sigEncode(ch []byte, z []ringElement, h [][n]byte, p parameters) []byte {
sig := make([]byte, 0, sigSize(p))
sig = append(sig, ch...)
for i := range z {
sig = bitPack(sig, z[i], p)
}
sig = hintEncode(sig, h, p)
return sig
}
func sigDecode(sig []byte, z []ringElement, h [][n]byte, p parameters) (ch []byte, err error) {
if len(sig) != sigSize(p) {
return nil, errInvalidSignatureLength
}
ch, sig = sig[:p.λ/4], sig[p.λ/4:]
for i := range z {
length := (p.γ1 + 1) * n / 8
z[i] = bitUnpack(sig[:length], p)
sig = sig[length:]
}
if err := hintDecode(sig, h, p); err != nil {
return nil, err
}
return ch, nil
}
func hintEncode(buf []byte, h [][n]byte, p parameters) []byte {
ω, k := p.ω, p.k
out, y := sliceForAppend(buf, ω+k)
var idx byte
for i := range k {
for j := range n {
if h[i][j] != 0 {
y[idx] = byte(j)
idx++
}
}
y[ω+i] = idx
}
return out
}
func hintDecode(y []byte, h [][n]byte, p parameters) error {
ω, k := p.ω, p.k
if len(y) != ω+k {
return errors.New("mldsa: internal error: invalid signature hint length")
}
var idx byte
for i := range k {
limit := y[ω+i]
if limit < idx || limit > byte(ω) {
return errInvalidSignatureHintLimits
}
first := idx
for idx < limit {
if idx > first && y[idx-1] >= y[idx] {
return errInvalidSignatureHintIndexOrder
}
h[i][y[idx]] = 1
idx++
}
}
for i := idx; i < byte(ω); i++ {
if y[i] != 0 {
return errInvalidSignatureHintExtraIndices
}
}
return nil
}

View File

@@ -0,0 +1,431 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"bytes"
"crypto/internal/fips140/sha3"
"crypto/sha256"
"encoding/hex"
"strings"
"testing"
)
// Most tests are in crypto/internal/fips140test/mldsa_test.go, so they can
// apply to all FIPS 140-3 module versions. This file contains only tests that
// need access to the unexported symbol testingOnlyRejectionReason.
func TestACVPRejectionKATs(t *testing.T) {
testCases := []struct {
name string
seed string // input to ML-DSA.KeyGen_internal
keyHash string // SHA2-256(pk || sk)
msg string // M' input to ML-DSA.Sign_internal
sigHash string // SHA2-256(sig)
newPrivateKey func([]byte) (*PrivateKey, error)
newPublicKey func([]byte) (*PublicKey, error)
}{
// https://pages.nist.gov/ACVP/draft-celi-acvp-ml-dsa.html#table-1
// ML-DSA Algorithm 7 ML-DSA.Sign_internal() Known Answer Tests for Rejection Cases
{
"Path/ML-DSA-44/1",
"5C624FCC1862452452D0C665840D8237F43108E5499EDCDC108FBC49D596E4B7",
"AC825C59D8A4C453A2C4EFEA8395741CA404F3000E28D56B25D03BB402E5CB2F",
"951FDF5473A4CBA6D9E5B5DB7E79FB8173921BA5B13E9271401B8F907B8B7D5B",
"DCC71A421BC6FFAFB7DF0C7F6D018A19ADA154D1E2EE360ED533CECD5DC980AD",
NewPrivateKey44, NewPublicKey44,
},
{
"Path/ML-DSA-44/2",
"836EABEDB4D2CD9BE6A4D957CF5EE6BF489304136864C55C2C5F01DA5047D18B",
"E1FF40D96E3552FAB531D1715084B7E38CCDBACC0A8AF94C30959FB4C7F5A445",
"199A0AB735E9004163DD02D319A61CFE81638E3BF47BB1E90E90D6E3EA545247",
"A2608BC27E60541D27B6A14F460D54A48C0298DCC3F45999F29047A3135C4941",
NewPrivateKey44, NewPublicKey44,
},
{
"Path/ML-DSA-44/3",
"CA5A01E1EA6552CB5C9803462B94C2F1DC9D13BB17A6ACE510D157056A2C6114",
"A4652DC4A271095268DD84A5B0744DFDBE2E642E4D41FBC4329C2FBA534C0E13",
"8C8CACA88FFF52B9330510537B3701B3993F3726136A650F48F8604551550832",
"B4B142209137397DAD504CAED01D390ADAF49973D8D2414FC3457FB7AF775189",
NewPrivateKey44, NewPublicKey44,
},
{
"Path/ML-DSA-44/4",
"9C005F1550B4F31855C6B92F978736733F37791CB39DD182D7BA5732BDC2483E",
"2485AA99345F1B334D4D94B610FBFFCCB626CBFD4E9FF0E1F6FC35093C423544",
"B744343F30F7FEE088998BA574E799F1BF3939C06C29BF9AC10F3588A57E21E2",
"5B80A60BAA480B9D0C7D2C05B50928C4BF6808DDA693642058A3EB77EAA768FC",
NewPrivateKey44, NewPublicKey44,
},
{
"Path/ML-DSA-44/5",
"4FAB5485B009399E8AE6FC3D3EEFBFE8E09796E4477AABD5EB1CC908FA734DE3",
"CB56909A7CF3008A662DC635EDCB79DC151CA7ACBAE17B544384ABD91BBBC1E9",
"7CAB0FDCF4BEA5F039137478AA45C9C48EF96D906FC49F6E2F138111BF1B4A4E",
"6CC38D73D639682ABC556DC6DCF436DE24033091F34004F410FABC6887F77AB0",
NewPrivateKey44, NewPublicKey44,
},
{
"Path/ML-DSA-65/1",
"464756A985E5DF03739D95DD309C1ED9C5B04254CC294E7E7EB9B9365EE15117",
"AE95EA0DAA80199E7B4A74EB5A1B1DC6C3805BD01D2FA78D7C4FBA8C255AA13D",
"491101BBA044DE6E44A63796C33CDA051BB05A60725B87AF4BA9DB940C03AC09",
"8E08EA0C8DB941685B9905A73B0B57BAD3500B1F73490480B24375B41230CC04",
NewPrivateKey65, NewPublicKey65,
},
{
"Path/ML-DSA-65/2",
"235A48DB4CA7916B884F424A8586EFD517E87C64AECEC0FCE9A3CC212BA1522E",
"1AC58A909DB4D7BC2473AB5E24AF768279C76F86A82D448258E24EEA4EA6B713",
"F8CE85CB2EC474FFBF5A3FFAE029CE6F4526B8D597655067F97F438B81071E9B",
"AE9531A01738615B6D33C77B3FF618A86E101FDC4C8504681F0EDFA64511AD63",
NewPrivateKey65, NewPublicKey65,
},
{
"Path/ML-DSA-65/3",
"E13131B705A760305FEFFEBFE99082E2691A444BBEFCC3EDF67D909886200207",
"B422093F95CC489C52F4FA2B8973A2FDDD44426D1D04D1AAEEFC8715D417181F",
"CD365512C7E61BBAA130800B37F3BB46AAF1BEEF3742EA8A9010A6DD4576ED0B",
"3C55E604DECA7B89A99305D7A391C35F66A17C1923F467675EC951C0948D21C9",
NewPrivateKey65, NewPublicKey65,
},
{
"Path/ML-DSA-65/4",
"0A4793E040A4BC0D0F37643D12C1EA1F10648724609936C76E0EC83E37209E92",
"622D26D536D4D66CD94956B33A74E2E830ED265D25C34FF7C3E5243403146ADF",
"6D9C7A795E48D80A892CBF4D4558429787277E3806EB5D0BCE1640EEBBBF9AEC",
"3B141110B9F56540B2D49AACDE6399974A4EAC40621E367E68D4504F294DB21B",
NewPrivateKey65, NewPublicKey65,
},
{
"Path/ML-DSA-65/5",
"F865B889E5022D54BABC81CA67E7EB39F1AC42F92CF5295C3DA5C9667DB1B924",
"45BC8EDD1A620C46E973E346844270721824D97888BC174281852D98B7E8F4A3",
"047AFAADBE020ED2D766DA85317DEDE80BE550545F0B21E3F555A990F8004258",
"56308A3578360C41356BA9C97D3240E01767FA76BBBA9FD0CC6CFA9ADD088DB9",
NewPrivateKey65, NewPublicKey65,
},
{
"Path/ML-DSA-87/1",
"0D58219132746BE077DFE821E9F8FD87857B28AB91D6A567E312A73E2636032C",
"4D261270341A7AC6B66900DDC2B8AB34AB483C897410DDF3B2C072BDDA416434",
"3AA49EF72D010AEC19383BA1E83EC2DD3DCC207A96FFCEB9FFA269E3E3D66400",
"5049DC39045618B903C71595B3A3E07A731F95D37304623ACC98BCEF4258B4CA",
NewPrivateKey87, NewPublicKey87,
},
{
"Path/ML-DSA-87/2",
"146C47AB9F88408EB76A813294D533B29D7E0FDA75DA5A4E7C69EB61EFEEBB78",
"05194438AF855B79DB8CCCCB647D6BA5C7AAF901BBD09D3B29395F0EA431D164",
"82C44F998A8D24F056084D0E80ECFD8434493385A284C69974923C270D397782",
"CFFC5988A351E14A3EE1282F042A143679C4503814296B27993949A7FF966F57",
NewPrivateKey87, NewPublicKey87,
},
{
"Path/ML-DSA-87/3",
"049D9B0B646A2AC7F50B63CE5E4BFE44C9B87634F4FF6C14C513E388B8A1F808",
"AC8FE6B2FE26591B129EA536A9A001C785D8ACBDD9489F6E51469A156E9E635D",
"FEBC9F8AE159002BE1A11D395959DD7FC20718135690CDAA2BCFB5801C02AB89",
"FF4006089BDF7337E868F86DDF48F239D2A52EA1D0F686E0103BF19C3B571DB1",
NewPrivateKey87, NewPublicKey87,
},
{
"Path/ML-DSA-87/4",
"9823DDDE446A8EA883DAD3AC6477F79839FDC2D2DEF2416BE0A8B71CFBC3F5C6",
"525010E307C4EA7667D54EE27007C219B01F4CF88DC3AB2DE8E9AAA59440A884",
"F7592C97C1A96A2F4053588F5CDAD4C50BF7C3752709854FA27779B445DD2BA2",
"FD7757602B83B0A67A314CD5BCC880E7AE47ACDF4D6AF98269028EFB486838F7",
NewPrivateKey87, NewPublicKey87,
},
{
"Path/ML-DSA-87/5",
"AE213FE8589B414F53780D8B9B6837179967E13CB474C5AD365C043778D2BC90",
"D4988E91064E5DF6D867434D1DED16DCD8533E39E420DC2B4EB9E40A84146F7D",
"19C1913BA76FF04596BB7CC80FD825A5AEDEF5D5AD61CEDB5203E6D7EDB18877",
"23FE743EDD101970D499E7EB57A7AA245BAF417E851B260C55DD525A445F08DA",
NewPrivateKey87, NewPublicKey87,
},
// https://pages.nist.gov/ACVP/draft-celi-acvp-ml-dsa.html#table-2
// ML-DSA Algorithm 7 ML-DSA.Sign_internal() Known Answer Tests for Number of Rejection Cases
{
"Count/ML-DSA-44/77",
"090D97C1F4166EB32CA67C5FB564ACBE0735DB4AF4B8DB3A7C2CE7402357CA44",
"26D79E4068040E996BC9EB5034C20489C0AD38DC2FEC1918D0760C8621872408",
"E3838364B37F47EDFCA2B577B20B80C3CB51B9F56E0E4CDB7DF002C874039252",
"CD91150C610FF02DE1DD7049C309EFE800CE5C1BC2E5A32D752AB62C5BF5E16F",
NewPrivateKey44, NewPublicKey44,
},
{
"Count/ML-DSA-44/100",
"CFC73D07A883543A804F770070861825143A62F2F97D05FCE00FD8B25D29A43F",
"89142AB26D6EB6C01FA3F189A9C877597740D685983F29BBDD3596648266AE0E",
"0960C13E9BA467A938450120CC96FF6F04B7E557C99A838619A48F9A38738AB8",
"B6296FFF0C1F23DE4906D58144B00A2DB13AD25E49B4B8573A62EFEECB544DD7",
NewPrivateKey44, NewPublicKey44,
},
{
"Count/ML-DSA-65/64",
"26B605C78AC762FA1634C6F91DD117C4FBFF7F3A7E7781F0CC83B6281F04AD7F",
"5DA13E571DF80867A8F27E0FF81BE7252A1ABF89B3D6A03D4036AF643EFBB04B",
"C9B07E7DDC0274468F312F5C692A54AC73D1E34D8638E20A2CD3C788F27D4355",
"12A4637E3A833A5A2A46F6A991399E544B62A230B7AA82F7366840FF6A88DE61",
NewPrivateKey65, NewPublicKey65,
},
{
"Count/ML-DSA-65/73",
"9191CF381BEE17475C011986EFB6AFB1EFA6997442FD33427353F1DA1AA39FC0",
"7930D4E52BA03B61DAA57743B39E291D824DC156356C6B1A8232574D5C8BDD08",
"E616E36E81AA1EC39262109421AE0DDDA5E3B5A8F4A252BCA27AE882538DF618",
"3D758ACE312433D780403B3D4273171FB93D008B395352142C6DC5173E517310",
NewPrivateKey65, NewPublicKey65,
},
{
"Count/ML-DSA-65/66",
"516912C7B90A3DBE009B7478DBCAF0F5C5C9ED9699A20D0CA56CC516E5A444CD",
"0FD15951B93A4D19446B48D47D32D2CA2253FF43BB8CCCB34C07E5F1A3181B7A",
"9247CA75F9456226A0C783DABCC33FF5B4B489575ADED543E74B29B45F9C8EF2",
"E5CE267800EDF33588451050F9B4A5BF97030D045132A7E3ED9210E74028D23B",
NewPrivateKey65, NewPublicKey65,
},
{
"Count/ML-DSA-65/65",
"D4B841F882D50AB9E590066BAFABA0F0D04D32641C0B978E54CCAA69A6E8D2C4",
"0039C128DDE6923EA08FF14F5C5C66DCB282B471FD1917DBEBE07C8C45B73F8A",
"175231657B0F3C7065947999467C342064F29BFAEB553E97561407D5560E3AEB",
"8830EA254AF2854BF67C2B907E2321C94FD6EFB2FDAA77669FC3A5C4426C57C9",
NewPrivateKey65, NewPublicKey65,
},
{
"Count/ML-DSA-65/64",
"5492EB8D811072C030A30CC66B23A173059EBA0D4868CCB92FBE2510B4A5915F",
"573DCD99C86DAE81F6F80CB00AF40846028EA8F9FE63102FE4A78238BC7B660E",
"33D2753ED87D0003B44C1AF5F72EB931F559C6B4931AF7E249F65D3FA7613295",
"84D4AF50933D6E13D4332B86AF0692A66F5030AB01C2EAC4131A5EEBF78CE9E5",
NewPrivateKey65, NewPublicKey65,
},
{
"Count/ML-DSA-87/64",
"B5C07ECEFE9E7C3B885FDEF032BDF9F807B4011E2DFE6806C088D2081631C8EB",
"5D22F4C40F6EEB96BB891DB15884ED4B0009EA02A24D9D1E9ADFC81C7A42EA7F",
"D1D5C2D167D6E62906790A5FEDF5A0A754CFAF47E6A11AEB93FB8C41934C31F8",
"54F0A9CB26F98B394A35918ECA6760EBD10753FC5CDBA8BE508873AD83538131",
NewPrivateKey87, NewPublicKey87,
},
{
"Count/ML-DSA-87/65",
"E8FC3C9FAD711DDA2946334FBBD331468D6E9AB48EB86DCD03F300A17AEBC5E5",
"B6C4DC9B20CE5D0F445931EE316CF0676E806D1A6A98868881D060EA27CEB139",
"3B435F7A2CE431C7AB8EAE0991C5DAC610827C99D27803046FBC6C567D6B71F2",
"E337495F08773F14FB26A3E229B9B26D086644C7FDC300267F9DCDD5D78DB849",
NewPrivateKey87, NewPublicKey87,
},
{
"Count/ML-DSA-87/64",
"151F80886D6CE8C3B428964FE02C40CA0C8EFFA100EE089E54D785344FCCF719",
"127972C33323FEFBF6B69C19E0C86F41558D9AB2B1A8AD6F39BD0A0245DC8D7E",
"C628CE94D2AA99AA50CF15B147D4F9A9C62A3D4612152DE0A502C377F472D614",
"99B552B21432544248BFF47AC8F24CB78DBB25C9683F3ADCB75614BED58A0358",
NewPrivateKey87, NewPublicKey87,
},
{
"Count/ML-DSA-87/64",
"48BEFFB4C97E59E474E1906F39888BE5AE62F6A011C05EF6A6B8D1E54F2171B7",
"72DA77CF563CBB530129F60129AF989CA4036BA1058267BFBA34A2C70BE803C4",
"D2756A8FB4E47F796AF704ED0FC8C6E573D42DFAB443B329F00F8DB2FF12C465",
"E643914B8556D05360C65EB3E7A06BE7C398B82D49973EEFDC711E65B11EB5E8",
NewPrivateKey87, NewPublicKey87,
},
{
"Count/ML-DSA-87/69",
"FE2DA9DD93A077FCB6452AC88D0A5762EB896BAAAC6CE7D01CB1370BA8322390",
"7422DBE3F476FFE41A4EFB33F3DDFD8B328029BA3050603866C36CFBC2EE4B87",
"A86B29ADF2300D2636E21D4A350CD18E55A254379C3659A7A95D8734CEC1F005",
"8D25818DD972FFF5B9E9B4CC534A95100A1340C1C81D1486A68939D340E0A58B",
NewPrivateKey87, NewPublicKey87,
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
seed := fromHex(tc.seed)
priv, err := tc.newPrivateKey(seed)
if err != nil {
t.Fatalf("NewPrivateKey: %v", err)
}
if strings.Contains(t.Name(), "/Path/") {
// For path coverage tests, check that we hit all rejection paths.
reached := map[string]bool{"z": false, "r0": false, "ct0": false, "h": false}
// The ct0 rejection is only reachable for ML-DSA-44.
if priv.PublicKey().Parameters() != "ML-DSA-44" {
delete(reached, "ct0")
}
testingOnlyRejectionReason = func(reason string) {
t.Log(reason, "rejection")
reached[reason] = true
}
t.Cleanup(func() {
testingOnlyRejectionReason = nil
})
defer func() {
for reason, hit := range reached {
if !hit {
t.Errorf("Rejection path %q not hit", reason)
}
}
}()
}
pk := priv.PublicKey().Bytes()
sk := TestingOnlyPrivateKeySemiExpandedBytes(priv)
keyHashGot := sha256.Sum256(append(pk, sk...))
keyHashWant := fromHex(tc.keyHash)
if !bytes.Equal(keyHashGot[:], keyHashWant) {
t.Errorf("Key hash mismatch:\n got: %X\n want: %X", keyHashGot, keyHashWant)
}
pub, err := tc.newPublicKey(pk)
if err != nil {
t.Fatalf("NewPublicKey: %v", err)
}
if !pub.Equal(priv.PublicKey()) {
t.Errorf("Parsed public key not equal to original")
}
if *pub != *priv.PublicKey() {
t.Errorf("Parsed public key not identical to original")
}
// The table provides a Sign_internal input (not actually formatted
// like one), which is part of the pre-image of μ.
M := fromHex(tc.msg)
H := sha3.NewShake256()
tr := computePublicKeyHash(pk)
H.Write(tr[:])
H.Write(M)
μ := make([]byte, 64)
H.Read(μ)
t.Logf("Computed μ: %x", μ)
sig, err := SignExternalMuDeterministic(priv, μ)
if err != nil {
t.Fatalf("SignExternalMuDeterministic: %v", err)
}
sigHashGot := sha256.Sum256(sig)
sigHashWant := fromHex(tc.sigHash)
if !bytes.Equal(sigHashGot[:], sigHashWant) {
t.Errorf("Signature hash mismatch:\n got: %X\n want: %X", sigHashGot, sigHashWant)
}
if err := VerifyExternalMu(priv.PublicKey(), μ, sig); err != nil {
t.Errorf("Verify: %v", err)
}
wrong := make([]byte, len(μ))
if err := VerifyExternalMu(priv.PublicKey(), wrong, sig); err == nil {
t.Errorf("Verify passed on wrong message")
}
})
}
}
func TestCASTRejectionPaths(t *testing.T) {
reached := map[string]bool{"z": false, "r0": false, "ct0": false, "h": false}
testingOnlyRejectionReason = func(reason string) {
t.Log(reason, "rejection")
reached[reason] = true
}
t.Cleanup(func() {
testingOnlyRejectionReason = nil
})
fips140CAST()
for reason, hit := range reached {
if !hit {
t.Errorf("Rejection path %q not hit", reason)
}
}
}
func BenchmarkCAST(b *testing.B) {
// IG 10.3.A says "ML-DSA digital signature generation CASTs should cover
// all applicable rejection sampling loop paths". For ML-DSA-44, there are
// four paths. For ML-DSA-65 and ML-DSA-87, only three. This benchmark helps
// us figure out which is faster: four rejections of ML-DSA-44, or three of
// ML-DSA-65. (It's the former, but only barely.)
b.Run("ML-DSA-44", func(b *testing.B) {
// Same as TestACVPRejectionKATs/Test/Path/ML-DSA-44/1.
seed := fromHex("5C624FCC1862452452D0C665840D8237F43108E5499EDCDC108FBC49D596E4B7")
μ := fromHex("2ad1c72bb0fcbe28099ce8bd2ed836dfebe520aad38fbac66ef785a3cfb10fb4" +
"19327fa57818ee4e3718da4be48d24b59a208f8807271fdb7eda6e60141bd263")
skHash := fromHex("29374951cb2bc3cda7315ce7f0ab99c7d2d65292e6c5156e8aa62ac14b1412af")
sigHash := fromHex("dcc71a421bc6ffafb7df0c7f6d018a19ada154d1e2ee360ed533cecd5dc980ad")
for b.Loop() {
priv, err := NewPrivateKey44(seed)
if err != nil {
b.Fatalf("NewPrivateKey: %v", err)
}
sk := TestingOnlyPrivateKeySemiExpandedBytes(priv)
if sha256.Sum256(sk) != ([32]byte)(skHash) {
b.Fatalf("sk hash mismatch, got %x", sha256.Sum256(sk))
}
sig, err := SignExternalMuDeterministic(priv, μ)
if err != nil {
b.Fatalf("SignExternalMuDeterministic: %v", err)
}
if sha256.Sum256(sig) != ([32]byte)(sigHash) {
b.Fatalf("sig hash mismatch, got %x", sha256.Sum256(sig))
}
if err := VerifyExternalMu(priv.PublicKey(), μ, sig); err != nil {
b.Fatalf("Verify: %v", err)
}
}
})
b.Run("ML-DSA-65", func(b *testing.B) {
// Same as TestACVPRejectionKATs/Path/ML-DSA-65/4, which is the only one
// actually covering all three rejection paths, despite IG 10.3.A
// pointing explicitly at these vectors for this check. See
// https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6U34L4ISYzk/m/hel75x07AQAJ
seed := fromHex("F215BA2280D86F142012FC05FFC04F2C7D22FF5DD7D69AA0EFB081E3A53E9318")
μ := fromHex("35cdb7dddbed44af4641bac659f46598ed769ea9693fd4ed2152b84c45811d2e" +
"66eded1eb20cde1c1f4b82642a330d8e86ac432a2aefaa56cd9b2b5f4affd450")
skHash := fromHex("2e6f5ff659310b8ca1457a65d8b448b297a905dc08e06c1246a97daad0af6f7d")
sigHash := fromHex("c027d21b21fa75abe7f35cd84a54e2e83bd352140bc8c49eab2c45004e7268a7")
for b.Loop() {
priv, err := NewPrivateKey65(seed)
if err != nil {
b.Fatalf("NewPrivateKey: %v", err)
}
sk := TestingOnlyPrivateKeySemiExpandedBytes(priv)
if sha256.Sum256(sk) != ([32]byte)(skHash) {
b.Fatalf("sk hash mismatch, got %x", sha256.Sum256(sk))
}
sig, err := SignExternalMuDeterministic(priv, μ)
if err != nil {
b.Fatalf("SignExternalMuDeterministic: %v", err)
}
if sha256.Sum256(sig) != ([32]byte)(sigHash) {
b.Fatalf("sig hash mismatch, got %x", sha256.Sum256(sig))
}
if err := VerifyExternalMu(priv.PublicKey(), μ, sig); err != nil {
b.Fatalf("Verify: %v", err)
}
}
})
}
func fromHex(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return b
}

View File

@@ -0,0 +1,244 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mldsa
import (
"crypto/internal/fips140/drbg"
"errors"
"math/bits"
)
// FIPS 204 defines a needless semi-expanded format for private keys. This is
// not a good format for key storage and exchange, because it is large and
// requires careful parsing to reject malformed keys. Seeds instead are just 32
// bytes, are always valid, and always expand to valid keys in memory. It is
// *also* a poor in-memory format, because it defers computing the NTT of s1,
// s2, and t0 and the expansion of A until signing time, which is inefficient.
// For a hot second, it looked like we could have all agreed to only use seeds,
// but unfortunately OpenSSL and BouncyCastle lobbied hard against that during
// the WGLC of the LAMPS IETF working group. Also, ACVP tests provide and expect
// semi-expanded keys, so we implement them here for testing purposes.
func semiExpandedPrivKeySize(p parameters) int {
k, l := p.k, p.l
ηBitlen := bits.Len(uint(p.η)) + 1
// ρ + K + tr + l × n × η-bit coefficients of s₁ +
// k × n × η-bit coefficients of s₂ + k × n × 13-bit coefficients of t₀
return 32 + 32 + 64 + l*n*ηBitlen/8 + k*n*ηBitlen/8 + k*n*13/8
}
// TestingOnlyNewPrivateKeyFromSemiExpanded creates a PrivateKey from a
// semi-expanded private key encoding, for testing purposes. It rejects
// inconsistent keys.
//
// [PrivateKey.Bytes] must NOT be called on the resulting key, as it will
// produce a random value.
func TestingOnlyNewPrivateKeyFromSemiExpanded(sk []byte) (*PrivateKey, error) {
var p parameters
switch len(sk) {
case semiExpandedPrivKeySize(params44):
p = params44
case semiExpandedPrivKeySize(params65):
p = params65
case semiExpandedPrivKeySize(params87):
p = params87
default:
return nil, errors.New("mldsa: invalid semi-expanded private key size")
}
k, l := p.k, p.l
ρ, K, tr, s1, s2, t0, err := skDecode(sk, p)
if err != nil {
return nil, err
}
priv := &PrivateKey{pub: PublicKey{p: p}}
priv.k = K
priv.pub.tr = tr
A := priv.pub.a[:k*l]
computeMatrixA(A, ρ[:], p)
for r := range l {
priv.s1[r] = ntt(s1[r])
}
for r := range k {
priv.s2[r] = ntt(s2[r])
}
for r := range k {
priv.t0[r] = ntt(t0[r])
}
// We need to put something in priv.seed, and putting random bytes feels
// safer than putting anything predictable.
drbg.Read(priv.seed[:])
// Making this format *even more* annoying, we need to recompute t1 from ρ,
// s1, and s2 if we want to generate the public key. This is essentially as
// much work as regenerating everything from seed.
//
// You might also notice that the semi-expanded format also stores t0 and a
// hash of the public key, though. How are we supposed to check they are
// consistent without regenerating the public key? Do we even need to check?
// Who knows! FIPS 204 says
//
// > Note that there exist malformed inputs that can cause skDecode to
// > return values that are not in the correct range. Hence, skDecode
// > should only be run on inputs that come from trusted sources.
//
// so it sounds like it doesn't even want us to check the coefficients are
// within bounds, but especially if using this format for key exchange, that
// sounds like a bad idea. So we check everything.
t1 := make([][n]uint16, k, maxK)
for i := range k {
tHat := priv.s2[i]
for j := range l {
tHat = polyAdd(tHat, nttMul(A[i*l+j], priv.s1[j]))
}
t := inverseNTT(tHat)
for j := range n {
r1, r0 := power2Round(t[j])
t1[i][j] = r1
if r0 != t0[i][j] {
return nil, errors.New("mldsa: semi-expanded private key inconsistent with t0")
}
}
}
pk := pkEncode(priv.pub.raw[:0], ρ[:], t1, p)
if computePublicKeyHash(pk) != tr {
return nil, errors.New("mldsa: semi-expanded private key inconsistent with public key hash")
}
computeT1Hat(priv.pub.t1[:k], t1) // NTT(t₁ ⋅ 2ᵈ)
return priv, nil
}
func TestingOnlyPrivateKeySemiExpandedBytes(priv *PrivateKey) []byte {
k, l, η := priv.pub.p.k, priv.pub.p.l, priv.pub.p.η
sk := make([]byte, 0, semiExpandedPrivKeySize(priv.pub.p))
sk = append(sk, priv.pub.raw[:32]...) // ρ
sk = append(sk, priv.k[:]...) // K
sk = append(sk, priv.pub.tr[:]...) // tr
for i := range l {
sk = bitPackSlow(sk, inverseNTT(priv.s1[i]), η, η)
}
for i := range k {
sk = bitPackSlow(sk, inverseNTT(priv.s2[i]), η, η)
}
const bound = 1 << (13 - 1) // 2^(d-1)
for i := range k {
sk = bitPackSlow(sk, inverseNTT(priv.t0[i]), bound-1, bound)
}
return sk
}
func skDecode(sk []byte, p parameters) (ρ, K [32]byte, tr [64]byte, s1, s2, t0 []ringElement, err error) {
k, l, η := p.k, p.l, p.η
if len(sk) != semiExpandedPrivKeySize(p) {
err = errors.New("mldsa: invalid semi-expanded private key size")
return
}
copy(ρ[:], sk[:32])
sk = sk[32:]
copy(K[:], sk[:32])
sk = sk[32:]
copy(tr[:], sk[:64])
sk = sk[64:]
s1 = make([]ringElement, l)
for i := range l {
length := n * bits.Len(uint(η)*2) / 8
s1[i], err = bitUnpackSlow(sk[:length], η, η)
if err != nil {
return
}
sk = sk[length:]
}
s2 = make([]ringElement, k)
for i := range k {
length := n * bits.Len(uint(η)*2) / 8
s2[i], err = bitUnpackSlow(sk[:length], η, η)
if err != nil {
return
}
sk = sk[length:]
}
const bound = 1 << (13 - 1) // 2^(d-1)
t0 = make([]ringElement, k)
for i := range k {
length := n * 13 / 8
t0[i], err = bitUnpackSlow(sk[:length], bound-1, bound)
if err != nil {
return
}
sk = sk[length:]
}
return
}
func bitPackSlow(buf []byte, r ringElement, a, b int) []byte {
bitlen := bits.Len(uint(a + b))
if bitlen <= 0 || bitlen > 16 {
panic("mldsa: internal error: invalid bitlen")
}
out, v := sliceForAppend(buf, n*bitlen/8)
var acc uint32
var accBits uint
for i := range r {
w := int32(b) - fieldCenteredMod(r[i])
acc |= uint32(w) << accBits
accBits += uint(bitlen)
for accBits >= 8 {
v[0] = byte(acc)
v = v[1:]
acc >>= 8
accBits -= 8
}
}
if accBits > 0 {
v[0] = byte(acc)
}
return out
}
func bitUnpackSlow(v []byte, a, b int) (ringElement, error) {
bitlen := bits.Len(uint(a + b))
if bitlen <= 0 || bitlen > 16 {
panic("mldsa: internal error: invalid bitlen")
}
if len(v) != n*bitlen/8 {
return ringElement{}, errors.New("mldsa: invalid input length for bitUnpackSlow")
}
mask := uint32((1 << bitlen) - 1)
maxValue := uint32(a + b)
var r ringElement
var acc uint32
var accBits uint
vIdx := 0
for i := range r {
for accBits < uint(bitlen) {
if vIdx < len(v) {
acc |= uint32(v[vIdx]) << accBits
vIdx++
accBits += 8
}
}
w := acc & mask
if w > maxValue {
return ringElement{}, errors.New("mldsa: coefficient out of range")
}
r[i] = fieldSubToMontgomery(uint32(b), w)
acc >>= bitlen
accBits -= uint(bitlen)
}
return r, nil
}

View File

@@ -4,9 +4,7 @@
package byteorder
import (
"internal/byteorder"
)
import "internal/byteorder"
func LEUint16(b []byte) uint16 {
return byteorder.LEUint16(b)
@@ -36,6 +34,10 @@ func BEPutUint64(b []byte, v uint64) {
byteorder.BEPutUint64(b, v)
}
func LEPutUint16(b []byte, v uint16) {
byteorder.LEPutUint16(b, v)
}
func LEPutUint64(b []byte, v uint64) {
byteorder.LEPutUint64(b, v)
}

View File

@@ -0,0 +1,9 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build fips140v1.0
package fipstest
func fips140v2Conditionals() {}

View File

@@ -0,0 +1,16 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !fips140v1.0
package fipstest
import "crypto/internal/fips140/mldsa"
func fips140v2Conditionals() {
// ML-DSA sign and verify PCT
kMLDSA := mldsa.GenerateKey44()
// ML-DSA-44
mldsa.SignDeterministic(kMLDSA, make([]byte, 32), "")
}

View File

@@ -6,6 +6,7 @@ package fipstest
import (
"crypto"
"crypto/internal/fips140"
"crypto/rand"
"fmt"
"internal/testenv"
@@ -48,6 +49,8 @@ var allCASTs = []string{
"HKDF-SHA2-256",
"HMAC-SHA2-256",
"KAS-ECC-SSC P-256",
"ML-DSA sign and verify PCT",
"ML-DSA-44",
"ML-KEM PCT", // -768
"ML-KEM PCT", // -1024
"ML-KEM-768",
@@ -61,6 +64,14 @@ var allCASTs = []string{
"cSHAKE128",
}
func init() {
if fips140.Version() == "v1.0.0" {
allCASTs = slices.DeleteFunc(allCASTs, func(s string) bool {
return strings.HasPrefix(s, "ML-DSA")
})
}
}
func TestAllCASTs(t *testing.T) {
testenv.MustHaveSource(t)
@@ -104,6 +115,7 @@ func TestAllCASTs(t *testing.T) {
// TestConditionals causes the conditional CASTs and PCTs to be invoked.
func TestConditionals(t *testing.T) {
fips140v2Conditionals()
// ML-KEM PCT
kMLKEM, err := mlkem.GenerateKey768()
if err != nil {

View File

@@ -0,0 +1,728 @@
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !fips140v1.0
package fipstest
import (
"crypto/internal/cryptotest"
"crypto/internal/fips140"
. "crypto/internal/fips140/mldsa"
"crypto/internal/fips140/sha3"
"encoding/hex"
"flag"
"math/rand"
"testing"
)
var sixtyMillionFlag = flag.Bool("60million", false, "run 60M-iterations accumulated test")
// TestMLDSAAccumulated accumulates 10k (or 100, or 60M) random vectors and checks
// the hash of the result, to avoid checking in megabytes of test vectors.
//
// 60M in particular is enough to give a 99.9% chance of hitting every value in
// the base field.
//
// 1-((q-1)/q)^60000000 ~= 0.9992
//
// If setting -60million, remember to also set -timeout 0.
func TestMLDSAAccumulated(t *testing.T) {
t.Run("ML-DSA-44/100", func(t *testing.T) {
testMLDSAAccumulated(t, NewPrivateKey44, NewPublicKey44, 100,
"d51148e1f9f4fa1a723a6cf42e25f2a99eb5c1b378b3d2dbbd561b1203beeae4")
})
t.Run("ML-DSA-65/100", func(t *testing.T) {
testMLDSAAccumulated(t, NewPrivateKey65, NewPublicKey65, 100,
"8358a1843220194417cadbc2651295cd8fc65125b5a5c1a239a16dc8b57ca199")
})
t.Run("ML-DSA-87/100", func(t *testing.T) {
testMLDSAAccumulated(t, NewPrivateKey87, NewPublicKey87, 100,
"8c3ad714777622b8f21ce31bb35f71394f23bc0fcf3c78ace5d608990f3b061b")
})
if !testing.Short() {
t.Run("ML-DSA-44/10k", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey44, NewPublicKey44, 10000,
"e7fd21f6a59bcba60d65adc44404bb29a7c00e5d8d3ec06a732c00a306a7d143")
})
t.Run("ML-DSA-65/10k", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey65, NewPublicKey65, 10000,
"5ff5e196f0b830c3b10a9eb5358e7c98a3a20136cb677f3ae3b90175c3ace329")
})
t.Run("ML-DSA-87/10k", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey87, NewPublicKey87, 10000,
"80a8cf39317f7d0be0e24972c51ac152bd2a3e09bc0c32ce29dd82c4e7385e60")
})
}
if *sixtyMillionFlag {
t.Run("ML-DSA-44/60M", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey44, NewPublicKey44, 60000000,
"080b48049257f5cd30dee17d6aa393d6c42fe52a29099df84a460ebaf4b02330")
})
t.Run("ML-DSA-65/60M", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey65, NewPublicKey65, 60000000,
"0af0165db2b180f7a83dbecad1ccb758b9c2d834b7f801fc49dd572a9d4b1e83")
})
t.Run("ML-DSA-87/60M", func(t *testing.T) {
t.Parallel()
testMLDSAAccumulated(t, NewPrivateKey87, NewPublicKey87, 60000000,
"011166e9d5032c9bdc5c9bbb5dbb6c86df1c3d9bf3570b65ebae942dd9830057")
})
}
}
func testMLDSAAccumulated(t *testing.T, newPrivateKey func([]byte) (*PrivateKey, error), newPublicKey func([]byte) (*PublicKey, error), n int, expected string) {
s := sha3.NewShake128()
o := sha3.NewShake128()
seed := make([]byte, PrivateKeySize)
msg := make([]byte, 0)
for i := 0; i < n; i++ {
s.Read(seed)
dk, err := newPrivateKey(seed)
if err != nil {
t.Fatalf("NewPrivateKey: %v", err)
}
pk := dk.PublicKey().Bytes()
o.Write(pk)
sig, err := SignDeterministic(dk, msg, "")
if err != nil {
t.Fatalf("SignDeterministic: %v", err)
}
o.Write(sig)
pub, err := newPublicKey(pk)
if err != nil {
t.Fatalf("NewPublicKey: %v", err)
}
if *pub != *dk.PublicKey() {
t.Fatalf("public key mismatch")
}
if err := Verify(dk.PublicKey(), msg, sig, ""); err != nil {
t.Fatalf("Verify: %v", err)
}
}
got := hex.EncodeToString(o.Sum(nil))
if got != expected {
t.Errorf("got %s, expected %s", got, expected)
}
}
func TestMLDSAGenerateKey(t *testing.T) {
t.Run("ML-DSA-44", func(t *testing.T) {
testMLDSAGenerateKey(t, GenerateKey44, NewPrivateKey44)
})
t.Run("ML-DSA-65", func(t *testing.T) {
testMLDSAGenerateKey(t, GenerateKey65, NewPrivateKey65)
})
t.Run("ML-DSA-87", func(t *testing.T) {
testMLDSAGenerateKey(t, GenerateKey87, NewPrivateKey87)
})
}
func testMLDSAGenerateKey(t *testing.T, generateKey func() *PrivateKey, newPrivateKey func([]byte) (*PrivateKey, error)) {
k1 := generateKey()
k2 := generateKey()
if k1.Equal(k2) {
t.Errorf("two generated keys are equal")
}
k1x, err := newPrivateKey(k1.Bytes())
if err != nil {
t.Fatalf("NewPrivateKey: %v", err)
}
if !k1.Equal(k1x) {
t.Errorf("generated key and re-parsed key are not equal")
}
}
func TestMLDSAAllocations(t *testing.T) {
// We allocate the PrivateKey (k and kk) and PublicKey (pk) structs and the
// public key (pkBytes) and signature (sig) byte slices on the heap. They
// are all large and for the byte slices variable-length. Still, check we
// are not slipping more allocations in.
var expected float64 = 5
if fips140.Enabled {
// The PCT does a sign/verify cycle, which allocates a signature slice.
expected += 1
}
cryptotest.SkipTestAllocations(t)
if allocs := testing.AllocsPerRun(100, func() {
k := GenerateKey44()
seed := k.Bytes()
kk, err := NewPrivateKey44(seed)
if err != nil {
t.Fatalf("NewPrivateKey44: %v", err)
}
if !k.Equal(kk) {
t.Fatalf("keys not equal")
}
pkBytes := k.PublicKey().Bytes()
pk, err := NewPublicKey44(pkBytes)
if err != nil {
t.Fatalf("NewPublicKey44: %v", err)
}
message := []byte("Hello, world!")
context := "test"
sig, err := Sign(k, message, context)
if err != nil {
t.Fatalf("Sign: %v", err)
}
if err := Verify(pk, message, sig, context); err != nil {
t.Fatalf("Verify: %v", err)
}
}); allocs > expected {
t.Errorf("expected %0.0f allocations, got %0.1f", expected, allocs)
}
}
func BenchmarkMLDSASign(b *testing.B) {
// Signing works by rejection sampling, which introduces massive variance in
// individual signing times. To get stable but correct results, we benchmark
// a series of representative operations, engineered to have the same
// distribution of rejection counts and reasons as the average case. See also
// https://words.filippo.io/rsa-keygen-bench/ for a similar approach.
b.Run("ML-DSA-44", func(b *testing.B) {
benchmarkMLDSASign(b, NewPrivateKey44, benchmarkMessagesMLDSA44)
})
b.Run("ML-DSA-65", func(b *testing.B) {
benchmarkMLDSASign(b, NewPrivateKey65, benchmarkMessagesMLDSA65)
})
b.Run("ML-DSA-87", func(b *testing.B) {
benchmarkMLDSASign(b, NewPrivateKey87, benchmarkMessagesMLDSA87)
})
}
func benchmarkMLDSASign(b *testing.B, newPrivateKey func([]byte) (*PrivateKey, error), messages []string) {
seed := make([]byte, 32)
priv, err := newPrivateKey(seed)
if err != nil {
b.Fatalf("NewPrivateKey: %v", err)
}
rand.Shuffle(len(messages), func(i, j int) {
messages[i], messages[j] = messages[j], messages[i]
})
i := 0
for b.Loop() {
msg := messages[i]
if i++; i >= len(messages) {
i = 0
}
SignDeterministic(priv, []byte(msg), "")
}
}
// BenchmarkMLDSAVerify runs both public key parsing and signature verification,
// since pre-computation can be easily moved between the two, but in practice
// most uses of verification are for fresh public keys (unlike signing).
func BenchmarkMLDSAVerify(b *testing.B) {
b.Run("ML-DSA-44", func(b *testing.B) {
benchmarkMLDSAVerify(b, GenerateKey44, NewPublicKey44)
})
b.Run("ML-DSA-65", func(b *testing.B) {
benchmarkMLDSAVerify(b, GenerateKey65, NewPublicKey65)
})
b.Run("ML-DSA-87", func(b *testing.B) {
benchmarkMLDSAVerify(b, GenerateKey87, NewPublicKey87)
})
}
func benchmarkMLDSAVerify(b *testing.B, generateKey func() *PrivateKey, newPublicKey func([]byte) (*PublicKey, error)) {
priv := generateKey()
msg := make([]byte, 128)
sig, err := SignDeterministic(priv, msg, "context")
if err != nil {
b.Fatalf("SignDeterministic: %v", err)
}
pub := priv.PublicKey().Bytes()
for b.Loop() {
pk, err := newPublicKey(pub)
if err != nil {
b.Fatalf("NewPublicKey: %v", err)
}
if err := Verify(pk, msg, sig, "context"); err != nil {
b.Fatalf("Verify: %v", err)
}
}
}
func BenchmarkMLDSAKeygen(b *testing.B) {
b.Run("ML-DSA-44", func(b *testing.B) {
for b.Loop() {
NewPrivateKey44(make([]byte, 32))
}
})
b.Run("ML-DSA-65", func(b *testing.B) {
for b.Loop() {
NewPrivateKey65(make([]byte, 32))
}
})
b.Run("ML-DSA-87", func(b *testing.B) {
for b.Loop() {
NewPrivateKey87(make([]byte, 32))
}
})
}
var benchmarkMessagesMLDSA44 = []string{
"BUS7IAZWYOZ4JHJQYDWRTJL4V7",
"MK5HFFNP4TB5S6FM4KUFZSIXPD",
"DBFETUV4O56J57FXTXTIVCDIAR",
"I4FCMZ7UNLYAE2VVPKTE5ETXKL",
"56U76XRPOVFX3AU7MB2JHAP6JX",
"3ER6UPKIIDGCXLGLPU7KI3ODTN",
"JPQDX2IL3W5CYAFRZ4XUJOHQ3G",
"6AJOEI33Z3MLEBVC2Q67AYWK5L",
"WE3U36HYOPJ72RN3C74F6IOTTJ",
"NMPF5I3B2BKQG5RK26LMPQECCX",
"JRGAN2FA6IY7ESFGZ7PVI2RGWA",
"UIKLF6KNSIUHIIVNRKNUFRNR4W",
"HA252APFYUWHSZZFKP7CWGIBRY",
"JFY774TXRITQ6CIR56P2ZOTOL6",
"ZASYLW5Y3RAOC5NDZ2NCH5A4UY",
"42X4JXNPXMFRCFAE5AKR7XTFO7",
"YAHQUWUH534MUI2TYEKQR7VR3A",
"HBP7FGEXGSOZ5HNOVRGXZJU2KG",
"HG4O7DCRMYMQXASFLMYQ6NMIXK",
"2KPQMDZKS65CLJU4DHTMVV5WI3",
"G6YSUTEX4HHL44ISK2JVVK45BV",
"PUJGPEQUBQM3IK2EXDQFJ2WGBG",
"PNS6HMQAWA3RORSMSNEUAINMIR",
"L35MZS4XYIJK453OFXCZG4WHIK",
"CRY54YZMFRF6JTB3FPNNBWPUOG",
"Y25TSZBWGU4HJCRMWZHAWXQ2DN",
"23W64TW3AKZPKCM4HMKEHFI6VQ",
"PWQAOZ24B4VLNEQR4XKN7LZHDI",
"YINPDR3ZSAKPPXP6J6VAXHIPYO",
"JDBB52ZRAB3PYBPNE7P4COY5PJ",
"4DYU52LQLVG3LTREOTLBCJK3XC",
"AB45MV6RKUGPCW4EUK7DX23MJX",
"HEJSITE5K7J6YJ74OEATVTCERV",
"ZKI5QCFCGM26UK7F5KYTENXKD2",
"VH5G3ZLF5XC22QAEJ6JDGOBE5Y",
"HYGXFHH3JW5SENG26MXLL54IGV",
"MJUCRL36JZ757UYHBFPCJBPZRH",
"IBH3T6NAVLCJQBYSVHAQFUITYA",
"VMWCS7JMIMFQB6TPRAMOUXIKWD",
"SXRPGPNNW2MMBKQS3HJURIQ3XV",
"YPPYMJZW6WYXPSCZIPI57NTP5L",
"N3SH6DUH6UOPU7YMQ6BJJEQSPI",
"Q243DGA6VC6CW66FFUAB5V3VLB",
"OUUBXEU4NJBRN5XZJ7YQUPIZLA",
"H5TWHVGC7FXG6MCKJQURD3RNWG",
"OONG2ZZ7H3P5BREEEURNJHBBQG",
"HWROSSRTBCQOAIQAY5S4EQG4FX",
"AJW6PW62JQNU72VKGIQMPBX64C",
"OXECVUVAWBBBXGGQGQBTYVEP4S",
"M5XN6V2LQJDEIN3G4Z6WJO6AVT",
"NHGJUX3WGRTEIRPFWC2I467ST4",
"SEOADTJDKAYYLDSC4VAES2CRDJ",
"J5AT674S577ZFGEURNIAGYOHKW",
"VJQVNMGHG4ITFX2XSPSDEWVZWD",
"ZWY3KJPXTAVWWVHNAJDUXZ52TG",
"HY46PBUGP4EMH34C6Q56MO7CJP",
"MQTUO7CF6R6CRJPVV6F673M6VW",
"35Z2Z5KV2RBJPQ7OZ24ZJE6BKR",
"OVUEVXBLCU2BBY25QP5WJACDIX",
"LNJX7PCLYL35WYJBW6CTXENPUU",
"IH7E766LCENOQ5ZKZVCMLEPACU",
"T2HZFGDDSFQ6YADB52NIFLBFEV",
"RHQUJMN4MB5SYY4FP4ARZH52QJ",
"W7GZC5ZM63UF2EJ7OC4WJM3OTH",
"T2NHNFVOMICY33AQZSR53HXFQ6",
"7ZVB4Y4K4Y2VAM5NC7HHAJNZIB",
"UX2I4VF62XJGP2XTNN6LDKXTOH",
"HJAMJR5RQTQW7JMW7ZLPRBZE7E",
"HKWSKX7MB5346PHYNWNBAYDSYK",
"BVWSB75HFLLE45MWA6EPHPTCFR",
"YDH2J6NMM7UINHGUOPIUI7PSSR",
"SYQPZLK52HMUAQFMVHGRJYKBEY",
"7AA6UQFGSPBGNUDPLWXSGNKKPP",
"AYXRJGRWZ5S3QOEDVWYHHCICHV",
"KFJYAWO7IATSBCSTDUAA5EPFAN",
"3JABTLB6T2ICHGVT3HXZZ3OAIT",
"WCM3IBOCQJ36WSG627CCNK3QA7",
"5FB5H3BZN2J4RGR2DUW7M37NKZ",
"VKDDAD3BVOMPSNEDGIRHKX5S6R",
"LFH5HVUR726OSFD3YVYM3ZHEIH",
"Y4ETQB2KZVFB4M7SALLCTHX2FB",
"E6SAU3C25MO2WBBVBKCKP2N4ZE",
"3JA54Q3NEKURB5EAPL2FOFIESD",
"FZPBW7BIQIW3FTKQD4TLKNWLMD",
"LY5W6XFA2ZRI53FTUJYGWZ5RX6",
"QID236JY3ICR55O5YRED33O7YT",
"HDRU3L6MFEBCBQFNLF5IRPMOAL",
"232ANKJBDBG4TSKQ7GJMWTHT23",
"CDWE3CELZM5AOJGYEFHMUNSP5O",
"7LNJRBOKN6W7RXUU34MDJ2SNKL",
"S3IZOADTW2A6E5IGRO5WKX7FVH",
"ZAISTLXC55EBMTN6KZ6QX5S7OS",
"4Z5ZIVCMFR2PY2PY4Z47T4YPYA",
"NE36L53Z6AMYQU7Q5REFUF76MK",
"WND5UP5M6KWPBRFP5WIWTOWV3I",
"7OC54DLFWMADJEMKEJ3Y2FMMZS",
"BWJVZHGEN43ULNIOZCPZOB64HG",
"VDFPQSR7RE54A75GT4JDZY5JK2",
"HFCD5EPBZBSVMXIDA47DZ6MRD6",
"RNBVFIUUJUM7EHRE3VNWSTORGO",
"VO5NLQJBR22CRRYUETGTU6JLMR",
"RZOMNFHBTL6HMGWH4PEEDASK7U",
"QL73UBTOLK5O2TW43YWAIKS6T3",
"NE3QVSMWS5G3W5C3BMKTJNMI2L",
"YHI6EYQ4GZMB2QPGHPUG2ZUOEL",
"6MBATW7MFNRUQBFD3GM35B7YPM",
"AIYRY6P5T4XU44CGVPEV6W43FR",
"MIAQ2FHXMAPY5NXSS45VRDPRMG",
"2SNLHQYKK2K6NSWOF6KPGZ3CPC",
"RVBHIQO5LH77ZWEAO3SVL72M2V",
"XXTGJCJNRSNLE7ARAH2UU6LVKR",
"DQMGILY5IDMWN5OYQYYXH26ZGR",
"627VTXXMM455KMTFNUUTKNFXPY",
"HC7IBFGLZCWGUR4K7REPMPW6W4",
"CHL6JRQUS7D4NML3PFT37PPZAA",
"Y767HXJAGJ75KE3JLO4DTLQIXC",
"NTIODXI5I7TF2KXXWXOAYGT7G4",
"PKZYEK2WAI4D4HEYYZH6H5IOMP",
"FG6J6G7HZDEDF4JQBQOTC7RQGZ",
"3VHM2VZU77Y25E3UUYZJLB2QLA",
"WRZQJQW7ARH4DXYHVLCJ4HRTTB",
"LQXKV5HD2AZHENSJ2VFLJ5YU5L",
"MF6Q4OA2EN6TG6BUDK7RWCQNPU",
"3USKYKPC5CB3EC4ZRMZVE3R2UO",
"3WICO2GVS3IRBFUHNDLNKWVP7N",
"P6ZR2UZZOVUZKT4KUS5WICW5XE",
"PYPZUU76RYVOUZGUUX33HLDKYA",
"2FTSURHV34VYTVIUU7W6V5C3NK",
"YABDYMGXS2MD2CYF3S4ALG4FLG",
"MHIBDH25RRPWV3P4VAWT6SAX3I",
"OINSMWJQ2UTOOKZ3X6ICXXBQR7",
"PFTQS7JNU2Q3Q6L4CGBXVLOYNE",
"A4MZ7CCVYQUDJ2AFHNXBBQ3D24",
"CPUB5R3ORTCMSMCLUQURE6AN5O",
"NF5E7U3DFTXWFFXXHUXTEP4VZQ",
"AWB5WDFERWSSJG53YGJMDORQKR",
"U5JQUILKD6SEL6LXAMNFZP6VSW",
"M45NLOAFLO74EJKG5EXNET6J5Y",
"P2KTEUMZ5DZZMYSPOHDR2WJXAN",
"KVO7AXZNFBUBPYLOTZQQ42TFNS",
"WGJJ7SAEV6SBBWWYS4BTLD63WM",
"Y6GURVDV4ESRBPWSTV25T4PE4K",
"ESK7MPFPUZ5ZAQ52RP4SQIYCCC",
"623M3CIABZ3RANERQ2IREXAVYO",
"OQ4CQCFO42RS4BMMSGSDLUTOQO",
"AMFHRDVGM6G2TIR3TKIFGFSDVM",
"7VVSGGCVC53PLOYG7YHPFUJM5X",
"Z3HMESVL7EZUSZNZ33WXEBHA2N",
"AWWVRQD5W7IBSQPS26XOJVDV5H",
"OQBZ5ZST3U3NZYHSIWRNROIG6L",
"II573BW7DJLBYJSPSYIABQWDZD",
"MOKXOQFOCUCLQQH4UKH2DPE7VN",
"XR54NGUOU6BBUUTINNWBPJ35HX",
"DNK36COZGFXI6DY7WLCNUETIRT",
"R5M2PV7E3EHEM3TLGRCL3HSFMC",
"ITKENZQYDQMZFCUPOT7VF3BMU7",
"5GDCB74PPPHEP5N5G3DVRCYT7R",
"ZMKXVRPLI5PY5BDVEPOA3NQZGN",
"GBLIALWTHTUDTOMDERQFVB77CS",
"VKRTTXUTFOK4PJAQQZCCT7TV3T",
"ZJBUJJ4SW62BXOID3XO2W2M2PF",
"SKWT5T6QJTCD3FCINIK22KMVBJ",
"EHINNU6L33HRLOOJ3A2XFJSYQL",
"N4HRQJEFPAT5SU3YPO74WSMQIR",
"TGPTZ3ENMFWB5CZKJFR5WHIRI4",
"O4HNFTAUJJ2LZPQXPXRAXOVABA",
"4JVB5STP2YG5GYOXDWIF4KCKFB",
"MY554X3YZHBECLHNNZ7A3SPJTU",
"ASCJMAH7VCQAD2QJSWXPSVSM3H",
"NBNGL5DZ623KCG2JNZFGZMZ7KD",
"KGMZSW35AEQOJ6FA7IR7BHZI52",
"Q7QUHHS4OJFMJ4I3FY6TDKSMZQ",
"MZAE7TOEXAS76T7KIC73FEYRU4",
"2BVESR3REAWADCGYOYM7T646RG",
"EK3L2ORP4LT3HU3EMXDSQWFOKJ",
"3X4A6VMGMIDLVK72FZSDHSERWY",
"I3UHWI6M6HQFRBSQ6W2SABUNUP",
"REKPXW4DIB4MTKMPHN3RBVHVME",
"W37FNFZE35NX65Z7CVQ7L5U4L5",
"4AGYK6U2KP6RAOADCBUDDCBECV",
"IXM4SFQUDW2NOTXZIPWTNGET3F",
"6YE4G3VELF27MN3Z5B4VIQ3XYK",
"LPOZCPZAG3MD47MIWGR4FIOCDH",
"WGREKUL2LD7C7SYGKH7APIY2A6",
"WWW277FKTKUXQMP4BECSRHLWJI",
"UYE4IQPMSTXVQG7EJALKWWEGDN",
"TIV2L5Z6K7SNGNUVWSNKTAF4UE",
"I3FQOAW3PINUK26P62HCX657FO",
}
var benchmarkMessagesMLDSA65 = []string{
"NDGEUBUDWGRJJ3A4UNZZQOEKNL",
"ACGYQUXN4POOFUENCLNCIPHFAZ",
"Z3XETEYKROVJH7SIHOIAYCTO42",
"DXWCVCEFULV7XHRWHJWSEXWES7",
"BCR2D5PNLGFYX6B3QFQFV23JZP",
"2DVP5HNG54ES64QK4D37PWUYTJ",
"UJM4ADPJLURAIQH4XA6QYUGNJ6",
"B5WRCIPK5IVZW52R6TJOKNPKZH",
"7QNL6JTSP62IGX6RCM2NHRMTKK",
"EJSZQYLM7G7AJCGIEVBV2UW7NN",
"UFNA2NKJ3QFWNHHL5CXZ4R5H46",
"QZAXRTT3E4DOGVTJCOTBG3WXQV",
"KH2ETOYZO5UHIHIKATWJMUVG27",
"V5HVVQTOWRXZ2PB4XWXSEKXUN5",
"5LA7NAFI2LESMH533XY45QVCQW",
"SMF4TWPTMJA2Z4F4OVETTLVRAY",
"FWZ5OJAFMLTQRREPYF4VDRPPGI",
"OK3QMNO3OZSKSR6Q4BFVOVRWTH",
"NQOVN6F6AOBOEGMJTVMF67KTIJ",
"CCLC4Y6YT3AQ3HGT2QNSYAUGNV",
"CAZJHCHBUYQ6OKZ7DMWMDDLIZQ",
"LVW5XDTHPKOW5D452SYD7AFO6Q",
"EYA6O6FTYPC6TRKZPRPX5N2KQ4",
"Z6SGAEZ2SAAZHPQO7GL7CUMBAG",
"FKUCKW6JQVF4WQYXUSXYZQMAVY",
"LN2KDF4DANPE4SC4GKJ4BES3IZ",
"AVCRTWB6ALOQHY34XI7NTMP2JH",
"A5WHIS6CBWPCYIEC6N2MBAOEZ6",
"JC2BH476BXUQFIDA6UCR5V4G4F",
"NU6XH6VLSSFHVSRZCYXPFYKYCD",
"GSUXVZBDDYSZYFGXNP6AZW3PTC",
"XJPRNJ26XP4MIYH2Q7M7MPZ73M",
"INUTUP3IRFWIIT23DNFTIYKCFY",
"T4KH7HKLEYGXHBIRFGFCRUZCC4",
"GGQX4JFVWZHE5Y73YTLMSSOXNS",
"BUA4Q3TQZGLVHMMJU62GQOSHLV",
"WXW3SJXLSZO2MYF4YFIMXL2IQP",
"Q32XBVVGFQTSXAIDJE6XSEPRZG",
"6TEXT6SA7INRCTDSCSVZJEQ2YG",
"ZBN4UL43C3SJIG4HYR236PXCVS",
"TVWPLLC7NROBREWOM75VA3XCR3",
"CCDGL2FURLBABQ4IJBYCB75JFR",
"XBZGCOVTZHCPAARBTMAKPIE6GJ",
"TPRAENJ7I54XRIVH6LL6FDIA3I",
"RKOM3PHFILPIIQZL4ILQWGRYWI",
"CEEZIZ2WUXHQQFATYYGQ3ZDBTI",
"SLKOVAP6WLIVJBVU7VZG3ZGEOW",
"TWMCLJJSWEEQQPQGGDKEJ5SU2R",
"IFMUXXCD2LC7IGQLZ2QEK5UOQ2",
"C7IWFEBHW2CXN4XBJS7VLWH3VK",
"7KJYUEW3F264727TM4LE6RMGDO",
"BPG2XAPBMBTA4VMPUM7IZVZPK3",
"Y5X577BWRZNPLNUHJVSKGMUXYB",
"ZCKMKM23E4IUPTNQDFN2LTLZVX",
"4RKK223JNBDAP4G5DOAHHZ3VNO",
"5UZ3TQZHZT22ISTB4WJEVO6MC4",
"YMVS4HFSJ32CRZRL23PXZUEJFJ",
"UQEUJUTPSZLZARNBXWMCTMHPFF",
"CZAAZ5WK7EIPMW7NA3EZNNBF45",
"227PBHH23WM7F2QLEZSPFYXVW4",
"YUYS2J5CRFXZ4J4KJT2ZKIZVW3",
"MFLHZJOZV44SN4AH6OJ3QZWM2O",
"H2B3CRBCXYN7QWDGYUPHQZP23A",
"T4L6YWQUQ3CTACENAJ5WUXZWFH",
"N723H6MUGPZSRZ72C635OD4BP7",
"NI4TUMVA6LQPQV2TXPN4QOIGBZ",
"CQI3S4LSTQASSJJVZXEFPOVW7K",
"ANPY4HJ64LLSB3GK2R4C6WDBS3",
"RGWQCZKQLMT5FZRDE4B3VMASVK",
"Q3WCCF2HA3CA4WWRJBMGBW7WI7",
"2AKJRXFHXLUQPOXPTLSZN5PW4A",
"IJWOOTI4N7RWXJIHAPXN6KEWEN",
"4D53T6N6ATOVTD4LKSTAAWBJMU",
"B4G5HDD6RITG6NIH6FXCRZDYZM",
"TJCDFKMRUY2OG6KRSMNVCGQFUP",
"PB33IHQKALAY6H6GVBVLI6ZRXK",
"SCCWGW2J5S4WL4FTTMQ435F6DB",
"ZVJH2HSMTLHGXMGPMXLJCKCLLE",
"62LG37U6JXR77YRZQQCDSBHVCS",
"BU4CBWOXQ352TEOKIXO245ID4O",
"UEZOH7KEIODSEVRUF6GMWGA2RB",
"IPJWROME4GM66CGLUWP5BJ4SX6",
"355GDC7TG64AZJ7IJX6K62KZCZ",
"AHTFKX3V7XUB3EWOMQVCGZYGUE",
"N4RV2GKXJ4SPHHJ52Z7K5EGLER",
"ZY7V7NE5F66XHDHWM6YNFEWZA6",
"DIKFO5KAVT4WAP7BOEFM56ZUSR",
"4TDFOFKDAPIOM3MU5GD7NPXNWQ",
"AD7YZO756HDK6YWFILAKW3JWA7",
"NUA53JS2ZK2BGHH3A7BJTJZYW7",
"QLCNC3AQNKLRMSYR62WQSQP5VI",
"SJ7OBS7ZYXSGXOYXPE5KW2XKN6",
"44HBMOGMIMJS63CEXQU7FCXE2E",
"KCK3J7ZL6QF4SLHHSWTJURK7PG",
"HLH4CLUGBSOOBSS3BPO62N5MC3",
"3FNS4GITO6OEUBAVDDXK4WOBTD",
"IAC3K3I4AQGY3G6UHG7PL2N6TE",
"KUKLNH74POJI5DYAEWUD7RABTQ",
"ETM6N7VU3GBSQ7P5MCD6UF3E3S",
"IZITM5NYBGJZLSI3BI4VEMW43U",
"46OPQU4LL6N3Z2U7KYPKUMBAGI",
"EV7YZ5DMAV7VKYJQUFSRD37GPP",
"AV7W2PGYDJIAKLFVEBL6BXQSGC",
"M2FOX5QZEZKV4QXKPI5XUZDHEM",
"R4IFPLVMOVYCHRTR6LXAUGP3LL",
"JGH6XJUMP4DRVAM27P2JNOKXVO",
"D2XN3ZLLU6VFPMDYM7NBHSQEOI",
"2PO3BYENOMQK6SHQDCFSRPJQI3",
"IBVQ7U3QEUC6PQRE4PV53JTZTK",
"ZBCOX4P7NG2IXXFB2R43MG2SLV",
"5NJDPQVVDO7ADNZ2CV7L6QBNGZ",
"V7ASFIIYUMXFGW4B7ZM6LOGUTE",
"PX5IJZ7W2LUPKM6YN4PMZ43ZLM",
"AYK7SZ23DHC7Q56MWAJXBG76LB",
"UYCAPXJM4HNGKLIDSZ4NCEDJLN",
"UWMDZ3C2ODLACKGJPGETNQ3TA4",
"Q6OI6R3WYYJ4CCZCDJBQMCRCZR",
"LCMJHLP7354APCEGPKE7HHWTWB",
"N7T7ZKOYPAMEYTTDOWZNCN6PRD",
"UZADPU4UNHAF7L7LQDMTKA2EQH",
"DC2OEPQDECVLRVNNCS6BMH4CRA",
"37IZ427XHUMZ66EJ62U2YEZDAC",
"6BCZDQZDPZLS5OGESKNUBPSSFV",
"ST2LEMJ4OLQ32TJTLH2WCWT4WA",
"GA2TL4SFLEW4G2B5PQMIKJT5XG",
"L7PPBIET26EH7LQTLEFC4I4EIA",
"6YSM7MC2W4DEV6ULAHMX27LH56",
"QL26Z5KZ4YRRG2BXXGDRRLV357",
"677TWRAJ5NSNHCE243POQPEG7K",
"66MEBQJLGAGVXDX3KZ2YFTTVJM",
"6D4VUWAQD6R65ICSDLFAATC67V",
"7GXLD5CNU3TDUQSSW42SHL7B5D",
"RQETUMEBG2ZM2NF2EZAQHGHWWE",
"DCRX5ANWDMXZFIDVAXYLQZYMRN",
"5SDWT7YAF7L4WWANAGYINZAYXH",
"PZILRV7I2S6WKUSHKYRLA2JQY3",
"2G66TK2PZ5MOTAZDN7BFS3LAIH",
"QOLJ3WGJ6JS3FMMXBNTNAIKXVK",
"FMAL67YTHDCCYVZ5CRMN2XJPDN",
"UOTZDXTJKQ3YAIRKHTYNX6G55P",
"X3DLNPJ3V62LRHGEY4DTT35H3R",
"DKU7CHNXPB5QRZVGIQZW46XCKC",
"RAKBD4LQKEDTVDSK3DVTRWG23B",
"INTRA7BWHLVQMBRKBJNUSMF7MU",
"AUYRBNVCOYYHOHUYOOFIZ2FWMD",
"22EJVDEQ7PASLBAMTVKXOQP5RJ",
"3S6NATWA57SFTZEW7UZUOUYAEU",
}
var benchmarkMessagesMLDSA87 = []string{
"LQQPGPNUME6QDNDTQTS4BA7I7M",
"PTYEEJ7RMI6MXNN6PZH222Y6QI",
"R6DTHAADKNMEADDK5ECPNOTOAT",
"S2QM7VDC6UKRQNRETZMNAZ6SJT",
"EYULPTSJORQJCNYNYVHDFN4N3F",
"YETZNHZ75SXFU672VQ5WXYEPV2",
"KTSND3JGA4AN3PCMG4455JEXGR",
"JGE6HK37O6XMWZQZCHFUPNUEXP",
"CRYB2FZD2BYNANBFFO2HRZEHGZ",
"7MLNDZJ7OIEPBJZOMULOMQH2BA",
"4WQCNTIFVSX2DNALMWUKZRA6CI",
"Y5NK4OBDSDWC5WLL27CEEXYYOT",
"C4SSWSPBVCDAWJXH2CDMXR36LH",
"THDBKXRTKWJUGJMAAYTWTFMX7Z",
"NWXPUD4DAA6QOREW4AFFYQYQNG",
"3RQIJXMO7WYHBEBL3G6EOLNZNQ",
"R7JEOHFP2C7O4AVPRPRELXWOMM",
"LU6MWR7SZXVIKS54BY62X67NPA",
"FG2FFM4F2ECKHCSJ75KXK632JP",
"BF76ZDSVVUSYS5KK4FFD22YPS7",
"HCLBWZRLHEMYZLFWHLAN2BKCZ7",
"HGFVS4QC7AWXYPVRSWAK77KTQF",
"LUZ3C53PUUHBWCDJ7WAHK2UT3K",
"Y3WR6SMDUBW34N3MUT7EQYIJCV",
"F2X35AQTXVZBMPXTWNAAH4ZX2W",
"6MKFFDYWD6ZAKS3C6GRCRLZLRF",
"AFMZYYFRHKMQRNKU5UTSKQ74H6",
"TDTN7J3O367OVPWLESRNPLN4M2",
"WYMLD2X6N4CZ2RDOKF5CFTSYTG",
"UNPTSBLJ6HZRNR72T2VEEHCFX2",
"SNCM4R2P27AJOXBS67RMCARS3U",
"OU7QBE5QOXO7CIYTBJR3KOW2WK",
"2NNQOBQKZ2OD4ZAXI3SNEURYUP",
"YQTUPOYBT67XPCHIGKSGSKC3BZ",
"HGB4ZM3G76IXYWWCMVT3HONRIS",
"WZC6QUKRZZ2TOVA277JYKQITEW",
"XO2WT46A5HYL6CUJF7SGJ6YWOG",
"4QJA35PMYQIDRZ7ZHG7RLZJVGF",
"BMJZELWZ4I2UWXESU3NR6ATC4M",
"XWLFB7FN6D5PRY6YUXC5JUIBFM",
"WRAFFF27AVTIOYIBYA2IPTXI3R",
"VOXUTYTN2XZ362OJFO2R53UCUF",
"UHN73ARJ737WUJ6QYEI7U46OPO",
"3Y3K5E2A4ML3VYVNAFWEEIXTSN",
"QMU4322NKPRLE7JBGYFGS36H2S",
"NJAQTNCXPVDICTDVUKTPRCD2AX",
"OC373ZFBNV2H46T6OY3XRPSUHG",
"UBLAS6CDWE3A662MLKP7QDEOCC",
"BKFDLAL2RTPMERYVW3B7UJ5W3H",
"QFKFGXKGW5SAKLBAWQXUWW77OS",
"EJNUQHTLLOVB4ARETOGLY4WUTJ",
"N243OCMVLLAO6I2XLCYOIMQYGY",
"YRRFLWK7ZASUKYX7ZLQMW2PJ6X",
"3DGVPBWD2BIK6KQE65K72DNJNM",
"TJRYMNOAIW33VIHKLJG4GXAVUK",
"6DSRINAYXL34U54U355U7IVFGS",
"6CHA4MX7LVS77XKRWG7IYC3XVL",
"GM2CEGBEPBOHAPIOBUWJ4MJNTG",
"VJKHGBY33VUIJFEQLX3JVUNQBD",
"DTOHAD5M2KL46IZHE4TPLJWHTI",
"IYFG3UDN7ROOY2ZFSLM2BU2LMQ",
"A5OGJHPOE4PW6QSZYHZ5TKPGIC",
"FX4BCN67AEGCLUTLFPNDL3SQU5",
"MWIZQVOZOHTTBUXC3BEX62MNI5",
"BYHVJHBLK4O6LFSKEIQ3CAAKU7",
"QJU7P6KWSSKAA5GVA6RH4OV7MX",
"I3T3XM5Z5TAJHAYDQHFA2ZV7PU",
"L46MQCHV3TJ6FYIQQ2FCJXES74",
"QXZRQIYAJMXYR6PU3VDYGCIT5W",
"MFS53RR2XEYS22NYOJLGTHVTTM",
"FRWIWJRP4AQMXWX4WJ4WYVKM3E",
"X6GK6IGVLJWYSHLKHGXSW3TJDP",
"L5LPJ2HIWA4UY6G6FMZXGDEDAM",
"GD6FYOYUGDHXEQ5S2KLJEGNSN7",
"ODAL7ZRKXSPAAN5DVRBWJQCFQX",
"CV3QFBDXBPT3SCPJGUYSMDN6ZS",
"IGSLSACRZ6XID466KQIB4YNGYO",
"WZ2EACBN26RAML2S52YXRYP2OF",
"LB76VEVNOBYFMKFZ7SDFCBCHQE",
"TLFA7EU3JJFAP6EMUKNV2ZXRBM",
"SIIJF6OXAKRP25CBUYFBRCDDVP",
"TEPNI7TJ7HASJWIQMBS4VFLRQC",
"VK2JINYWEDV7IQFWH4OTAD4W5O",
"GILUH5AMVE4TM7EKPXJBZGT6EJ",
"DV7ALFRAW3TI4WMQQLDTO6RNHN",
"CAIB5G3NXC5ASPLFIWAFPVHS5B",
"MLFJXZUOAGN7EGPMXOOVTB2CL4",
"6MZYT3ANWHBOS67WGHZI3QPEAP",
"LVJDQB52C2PERSSQJRMRCJ4UBF",
"QY4VKAZAYQIZOX2L2VO2QHAQVC",
"UAA5SST2XA76JPKM3XOZ5RUHFI",
"VLZWF53JSQ6SCRUFDKVPXWAS4L",
"NX2DZIKMJIYXUNSAHFP23FHTBU",
"F5OAKDDDA34A2RPIKDPM5CYPMZ",
"E5PEP3ANIK2L4VLOST4NIYNKBD",
"IPBGFLHSMP4UFXF6XJX42T6CAL",
"XHPU7DBFTZB2TX5K34AD6DJTK3",
"2ZU7EJN2DG2UMT6HX5KGS2RFT6",
"SD5S7U34WSE4GBPKVDUDZLBIEH",
"WZFFL3BTQAV4VQMSAGCS45SGG3",
"QE7ZT2LI4CA5DLSVMHV6CP3E3V",
"YIWMS6AS72Z5N2ALZNFGCYC5QL",
"A4QJ5FNY54THAKBOB65K2JBIV7",
"6LORQGA3QO7TNADHEIINQZEE26",
"5V45M6RAKOZDMONYY4DIH3ZBL2",
"SVP7UYIZ5RTLWRKFLCWHAQV3Y2",
"C2UYQL2BBE4VLUJ3IFNFMHAN7O",
"P4DS44LGP2ERZB3OB7JISQKBXA",
"A6B4O5MWALOEHLILSVDOIXHQ4Z",
"DKQJTW5QF7KDZA3IR4X5R5F3CG",
"H6QFQX2C2QTH3YKEOO57SQS23J",
"DIF373ML2RWZMEOIVUHFXKUG7O",
"Z5PPIA3GJ74QXFFCOSUAQMN5YN",
"PM6XIDECSS5S77UXMB55VZHZSE",
}

View File

@@ -518,6 +518,7 @@ var depsRules = `
< crypto/internal/fips140/aes/gcm
< crypto/internal/fips140/hkdf
< crypto/internal/fips140/mlkem
< crypto/internal/fips140/mldsa
< crypto/internal/fips140/ssh
< crypto/internal/fips140/tls12
< crypto/internal/fips140/tls13