* WIP - MLX backend with gemma3
* MLX: add cmake and go tag build toggles
To build the new MLX backend code:
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install build --component MLX
go build -tags mlx .
Note: the main.go entrypoint for the MLX engine will change in a follow up commit.
* add experimental image generation runtime
* add experimental image generation runtime
* MLX: wire up cuda build for linux
* MLX: get dependencies correct and dedup
This is still too large for a unified github artifact, but is now "correct" for the mlx_cuda_v13
directory.
* fix relative link bug in dedup
* Add darwin build and readme
* add go build tag for mlx dependent code and wire up build_darwin.sh
* lint cleanup
* macos: build mlx for x86
This will be CPU only.
* cuda build instructions and fix drift from mlx bump
* stale comment
* Delete agent helper doc
* Clean up readme.md
* Revise README for tokenizer clarity and details
Updated README to clarify tokenizer functionality and removed correctness section.
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
The format qwen3-coder uses is relatively unique, both in rendering and
in parsing. To implement parsing, I wrote a custom parser in similar
style to harmony. For the rendering, I found that the logic would be
much more difficult to follow in a template, so I introduced the concept
of a built-in renderer that uses go code, rather than a template to
generate prompts.
I set us up for future built-in parsers and renderers by making it so
they can be specified in a Modelfile like so:
```
RENDERER "qwen3-coder"
PARSER "qwen3-coder"
```
These need to be provided explicitly because the architecture alone is
not enough to understand what format the model expects to receive, and
what format we expect it to output (e.g., qwen3-coder is `qwen3moe`,
which includes other qwen3-family models as well)
I haven't converted harmony to be one of these "built-ins" yet, since
some of it is in flux with the changes @ParthSareen has been making to
move harmony to the runner. It is likely that many other built-ins will
need to move to the runner as well, but I'm able to slightly defer that
decision since qwen3-coder doesn't have thinking (and therefore doesn't
need to be in the runner to make structured outputs work). I expect to
unify harmony with this approach very soon.
Whether a particular model supports tools or thinking was previously
inferred from templates, but without a template we now also use the
parser itself to declare what it supports. If we have future models that
re-use the same parsing format, but have different capabilities, we'll
want to parameterize them and give them different names to be specified
as a `PARSER`.
Misc changes:
- I worked on the renderer by diffing outputs from the reference
implementation and ours. To make it easier to do this, I extended
<https://github.com/ollama/ollama/pull/11875> to also support
returning the prompt via the openai compat layer
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>