Compare commits

...

26 Commits

Author SHA1 Message Date
Daniel Hiltgen
4fccafd932 test: improve integration test reliability 2026-01-27 16:44:25 -08:00
jmorganca
9f62f63c60 llama: update to b7847 2026-01-27 16:44:25 -08:00
Parth Sareen
26acab64b7 docs: add clawdbot (#13925) 2026-01-26 18:32:54 -08:00
Gyungrai Wang
e0f03790b1 parsers/ministral: fix nested tool call parsing by counting brace nesting (#13905)
* parsers/ministral: fix nested tool call parsing by counting brace nesting

* fix lint error

* parsers: refactor ministral parser

The old one was very tied to expecting to see only one token at a time,
which I don't like to assume (who knows what the future might hold wrt
speculative decoding, etc). This new one follows a similar structure to
qwen3-coder's parser, which incidentally makes it easier to test as well
(since we can test the individual events that come out when given
particular inputs).

---------

Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2026-01-26 15:03:43 -08:00
Parth Sareen
3ab842b0f5 cmd: clawdbot config fixes (#13922) 2026-01-26 14:34:29 -08:00
Parth Sareen
b8e8ef8929 cmd: ollama launch clawdbot (#13921) 2026-01-26 13:40:59 -08:00
Parth Sareen
465d124183 cmd: fix opencode config (#13894) 2026-01-24 18:42:56 -08:00
Parth Sareen
d310e56fa3 cmd: add fallback for claude (#13892) 2026-01-24 18:26:01 -08:00
Jeffrey Morgan
a1ca428c90 glm4moelite: fix attention scale calculation (#13893)
Use the original key dimension (qkNopeHeadDim + qkRopeHeadDim = 256) for
the attention scale instead of the MLA absorbed dimension (kvLoraRank +
qkRopeHeadDim = 576).

MLA absorption is a mathematically equivalent reorganization of the
attention computation - it should not change the effective attention
scale. The scale should match training, which uses 1/sqrt(256).

This improves tool calling and model looping issues.
2026-01-24 17:48:09 -08:00
Jeffrey Morgan
16750865d1 glm4moelite: quantize more tensors to q8_0 and avoid double BOS token (#13891) 2026-01-24 16:33:54 -08:00
Jeffrey Morgan
f3b476c592 build: add -O3 optimization to CGO flags (#13877)
CGO_CFLAGS and CGO_CXXFLAGS were being set without optimization flags,
which overrides Go's default -O2 and results in unoptimized C++ code.

This caused significant performance degradation in release builds
compared to local `go build` which uses the default optimization.

- build_darwin.sh: add -O3 to CGO_CFLAGS and CGO_CXXFLAGS exports
- Dockerfile: preserve CGO_CFLAGS/CGO_CXXFLAGS from build args instead
  of overwriting them
- app/README.md: update documentation to include -O3
2026-01-24 10:55:38 -08:00
Parth Sareen
5267d31d56 docs: ollama launch (#13852) 2026-01-23 23:18:50 -08:00
Stillhart
b44f56319f README: Update the "Ollama for ruby" to the most popular and maintained ruby gem. (#13855)
* update README ruby link

the ollama-ai ruby gem is vastly less popular and seems unmaintained
https://rubygems.org/gems/ollama-ai

the defacto standard with the most downloads in the ruby ecosystem is ruby_llm
https://rubygems.org/gems/ruby_llm

I would link to that to avoid complication and guarantee feature compatibility with ollama.

* Update gem link ruby_llm from website to GitHub

ollama links mostly to github, not project websites, hence link to ruby_llm github.
2026-01-24 01:24:52 -05:00
Jeffrey Morgan
0209c268bb llama: fix CUDA MMA errors in release build (#13874) 2026-01-23 20:10:04 -08:00
Jeffrey Morgan
912d984346 llama: fix fattn-tile shared memory overflow on sm_50/52 (#13872)
Use nthreads=128 for ncols=4 configurations in flash attention tile
kernel to reduce shared memory usage below 48KB limit on Maxwell
architectures (sm_50/52).

With nthreads=256 and ncols=4, np=2 which caused shared memory to
exceed 48KB. With nthreads=128 and ncols=4, np=1 keeps shared memory
under the limit.
2026-01-23 19:22:32 -08:00
Parth Sareen
aae6ecbaff cmd: rename ollama config to ollama launch (#13871) 2026-01-23 18:40:40 -08:00
Jeffrey Morgan
64737330a4 Re-apply "model: add MLA absorption for glm4moelite" with fix (#13870)
The nvidia_fp32 config for (576, 512) head sizes had nbatch_fa=32,
which caused zero-sized arrays when computing array dimensions:
  nbatch_fa / (np * warp_size) = 32 / (2 * 32) = 0

This resulted in CUDA compilation failures on CUDA 12 (Windows and
Linux arm64):
- "static assertion failed with nbatch_fa % (np*warp_size) != 0"
- "the size of an array must be greater than zero"

Fix by changing nbatch_fa from 32 to 64 for all (576, 512) configs
in the nvidia_fp32 function, matching the nvidia_fp16 and AMD configs.
2026-01-23 18:40:28 -08:00
Jeffrey Morgan
2eda97f1c3 Revert "model: add MLA absorption for glm4moelite (#13810)" (#13869)
This reverts commit 1044b0419a.
2026-01-23 17:14:15 -08:00
Jeffrey Morgan
66831dcf70 x/imagegen: fix image editing support (#13866)
- Fix panic in ollama show for image gen models (safe type assertion)
- Add vision capability for Flux2KleinPipeline models at create time
- Flatten transparent PNG images onto white background for better results
2026-01-23 15:37:17 -08:00
Jeffrey Morgan
1044b0419a model: add MLA absorption for glm4moelite (#13810)
* model: add MLA absorption for glm4moelite

Split the combined KV_B tensor into separate K_B and V_B tensors
during conversion, enabling MLA (Multi-head Latent Attention)
absorption which compresses the KV cache for improved efficiency.

* ggml: enable MLA flash attention for GLM-4.7-flash

Add support for gqa_ratio 4 in MLA flash attention kernels. GLM-4.7-flash
uses head size 576 with gqa_ratio 4, which was previously only supported
for gqa_ratio 16 (DeepSeek).

Metal changes:
- Enable head size 576 for flash attention
- Increase simdgroups to 8 for large heads (>=512)
- Add case 8 kernel dispatch for 8 simdgroups

CUDA changes:
- Add gqa_ratio 4 support for head 576/512
- Add tile configs for (576, 512, 4) and (576, 512, 8)
- Add MMA config cases for ncols 4
- Add template instances for ncols2=4

* model: add compatibility validation for glm4moelite architecture
2026-01-23 14:47:42 -08:00
Parth Sareen
771d9280ec cmd: ollama config fix droid model name configuration (#13856) 2026-01-23 11:44:22 -08:00
Jeffrey Morgan
862bc0a3bf x/imagegen: respect stream=false in /api/generate (#13853)
When stream=false is set for image generation requests, return a single
JSON response instead of streaming multiple ndjson progress updates.
2026-01-22 22:16:39 -08:00
Jeffrey Morgan
c01608b6a1 x/imagegen: add image edit capabilities (#13846) 2026-01-22 20:35:08 -08:00
Parth Sareen
199c41e16e cmd: ollama config command to help configure integrations to use Ollama (#13712) 2026-01-22 20:17:11 -08:00
Jeffrey Morgan
3b3bf6c217 x/imagegen: replace memory estimation with actual weight size (#13848)
Remove static VRAM estimation (EstimateVRAM, CheckMemoryRequirements)
which wasn't helpful. Instead, report the actual tensor weight size
from the manifest for ollama ps.

- Remove memory estimation check from runner startup
- Remove EstimateVRAM, CheckMemoryRequirements, modelVRAMEstimates
- Add TotalTensorSize() to get actual weight size from manifest
- Use weight size for Server.vramSize instead of estimates

Note: This is better than showing 0 or inaccurate estimates, but the
weight size is a drastic underestimation of actual memory usage since
it doesn't account for activations, intermediate tensors, or MLX
overhead. Future work should query real-time memory from MLX
(e.g., MetalGetActiveMemory) for accurate reporting.
2026-01-22 18:32:41 -08:00
Parth Sareen
f52c21f457 fix: handle Enter key pressed during model loading (#13839) 2026-01-22 18:32:02 -08:00
306 changed files with 27580 additions and 5105 deletions

View File

@@ -92,7 +92,7 @@ jobs:
flags: ''
- os: windows
arch: amd64
preset: 'CUDA 13'
preset: 'CUDA 13 Windows'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'

View File

@@ -40,7 +40,17 @@
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;103-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;103-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 4",
"OLLAMA_RUNNER_DIR": "cuda_v13"
}
},
{
"name": "CUDA 13 Windows",
"inherits": [ "CUDA" ],
"description": "Reduced architecture set for Windows to avoid MSVC template compilation issues",
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;89-virtual;100-virtual;120-virtual",
"CMAKE_CUDA_FLAGS": "-t 4",
"OLLAMA_RUNNER_DIR": "cuda_v13"
}
@@ -138,6 +148,11 @@
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "CUDA 13 Windows",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13 Windows"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],

View File

@@ -169,8 +169,10 @@ COPY . .
RUN git clone --depth 1 --branch "$(cat MLX_VERSION)" https://github.com/ml-explore/mlx-c.git build/_deps/mlx-c-src
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ENV CGO_CFLAGS="-I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
ENV CGO_CFLAGS="${CGO_CFLAGS} -I/go/src/github.com/ollama/ollama/build/_deps/mlx-c-src"
ENV CGO_CXXFLAGS="${CGO_CXXFLAGS}"
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -tags mlx -trimpath -buildmode=pie -o /bin/ollama .

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=ec98e2002
FETCH_HEAD=a5bb8ba4c50257437630c136210396810741bbf7
.PHONY: help
help:

View File

@@ -558,7 +558,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama for Ruby](https://github.com/crmne/ruby_llm)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)

View File

@@ -75,9 +75,9 @@ The `-dev` flag enables:
CI builds with Xcode 14.1 for OS compatibility prior to v13. If you want to manually build v11+ support, you can download the older Xcode [here](https://developer.apple.com/services-account/download?path=/Developer_Tools/Xcode_14.1/Xcode_14.1.xip), extract, then `mv ./Xcode.app /Applications/Xcode_14.1.0.app` then activate with:
```
export CGO_CFLAGS=-mmacosx-version-min=12.0
export CGO_CXXFLAGS=-mmacosx-version-min=12.0
export CGO_LDFLAGS=-mmacosx-version-min=12.0
export CGO_CFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_CXXFLAGS="-O3 -mmacosx-version-min=12.0"
export CGO_LDFLAGS="-mmacosx-version-min=12.0"
export SDKROOT=/Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
export DEVELOPER_DIR=/Applications/Xcode_14.1.0.app/Contents/Developer
```

View File

@@ -35,6 +35,7 @@ import (
"golang.org/x/term"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/cmd/config"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/parser"
@@ -1018,8 +1019,10 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
arch, _ := resp.ModelInfo["general.architecture"].(string)
if arch != "" {
rows = append(rows, []string{"", "architecture", arch})
}
var paramStr string
if resp.Details.ParameterSize != "" {
@@ -1029,7 +1032,9 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
paramStr = format.HumanNumber(uint64(f))
}
}
rows = append(rows, []string{"", "parameters", paramStr})
if paramStr != "" {
rows = append(rows, []string{"", "parameters", paramStr})
}
if v, ok := resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)]; ok {
if f, ok := v.(float64); ok {
@@ -2026,6 +2031,7 @@ func NewCLI() *cobra.Command {
copyCmd,
deleteCmd,
runnerCmd,
config.LaunchCmd(checkServerHeartbeat),
)
return rootCmd

58
cmd/config/claude.go Normal file
View File

@@ -0,0 +1,58 @@
package config
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"runtime"
)
// Claude implements Runner for Claude Code integration
type Claude struct{}
func (c *Claude) String() string { return "Claude Code" }
func (c *Claude) args(model string) []string {
if model != "" {
return []string{"--model", model}
}
return nil
}
func (c *Claude) findPath() (string, error) {
if p, err := exec.LookPath("claude"); err == nil {
return p, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fallback := filepath.Join(home, ".claude", "local", name)
if _, err := os.Stat(fallback); err != nil {
return "", err
}
return fallback, nil
}
func (c *Claude) Run(model string) error {
claudePath, err := c.findPath()
if err != nil {
return fmt.Errorf("claude is not installed, install from https://code.claude.com/docs/en/quickstart")
}
cmd := exec.Command(claudePath, c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Env = append(os.Environ(),
"ANTHROPIC_BASE_URL=http://localhost:11434",
"ANTHROPIC_API_KEY=",
"ANTHROPIC_AUTH_TOKEN=ollama",
)
return cmd.Run()
}

101
cmd/config/claude_test.go Normal file
View File

@@ -0,0 +1,101 @@
package config
import (
"os"
"path/filepath"
"runtime"
"slices"
"testing"
)
func TestClaudeIntegration(t *testing.T) {
c := &Claude{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "Claude Code" {
t.Errorf("String() = %q, want %q", got, "Claude Code")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
}
func TestClaudeFindPath(t *testing.T) {
c := &Claude{}
t.Run("finds claude in PATH", func(t *testing.T) {
tmpDir := t.TempDir()
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fakeBin := filepath.Join(tmpDir, name)
os.WriteFile(fakeBin, []byte("#!/bin/sh\n"), 0o755)
t.Setenv("PATH", tmpDir)
got, err := c.findPath()
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if got != fakeBin {
t.Errorf("findPath() = %q, want %q", got, fakeBin)
}
})
t.Run("falls back to ~/.claude/local/claude", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Setenv("PATH", t.TempDir()) // empty dir, no claude binary
name := "claude"
if runtime.GOOS == "windows" {
name = "claude.exe"
}
fallback := filepath.Join(tmpDir, ".claude", "local", name)
os.MkdirAll(filepath.Dir(fallback), 0o755)
os.WriteFile(fallback, []byte("#!/bin/sh\n"), 0o755)
got, err := c.findPath()
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if got != fallback {
t.Errorf("findPath() = %q, want %q", got, fallback)
}
})
t.Run("returns error when neither PATH nor fallback exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Setenv("PATH", t.TempDir()) // empty dir, no claude binary
_, err := c.findPath()
if err == nil {
t.Fatal("expected error, got nil")
}
})
}
func TestClaudeArgs(t *testing.T) {
c := &Claude{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--model", "llama3.2"}},
{"empty model", "", nil},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

193
cmd/config/clawdbot.go Normal file
View File

@@ -0,0 +1,193 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"io"
"os"
"os/exec"
"path/filepath"
"strings"
)
type Clawdbot struct{}
func (c *Clawdbot) String() string { return "Clawdbot" }
const ansiGreen = "\033[32m"
func (c *Clawdbot) Run(model string) error {
if _, err := exec.LookPath("clawdbot"); err != nil {
return fmt.Errorf("clawdbot is not installed, install from https://docs.clawd.bot")
}
models := []string{model}
if config, err := loadIntegration("clawdbot"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := c.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("clawdbot", "gateway")
cmd.Stdin = os.Stdin
// Capture output to detect "already running" message
var outputBuf bytes.Buffer
cmd.Stdout = io.MultiWriter(os.Stdout, &outputBuf)
cmd.Stderr = io.MultiWriter(os.Stderr, &outputBuf)
err := cmd.Run()
if err != nil && strings.Contains(outputBuf.String(), "Gateway already running") {
fmt.Fprintf(os.Stderr, "%sClawdbot has been configured with Ollama. Gateway is already running.%s\n", ansiGreen, ansiReset)
return nil
}
return err
}
func (c *Clawdbot) Paths() []string {
home, _ := os.UserHomeDir()
p := filepath.Join(home, ".clawdbot", "clawdbot.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
return nil
}
func (c *Clawdbot) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".clawdbot", "clawdbot.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
// Read into map[string]any to preserve unknown fields
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config)
}
// Navigate/create: models.providers.ollama (preserving other providers)
modelsSection, _ := config["models"].(map[string]any)
if modelsSection == nil {
modelsSection = make(map[string]any)
}
providers, _ := modelsSection["providers"].(map[string]any)
if providers == nil {
providers = make(map[string]any)
}
ollama, _ := providers["ollama"].(map[string]any)
if ollama == nil {
ollama = make(map[string]any)
}
ollama["baseUrl"] = "http://127.0.0.1:11434/v1"
// needed to register provider
ollama["apiKey"] = "ollama-local"
// TODO(parthsareen): potentially move to responses
ollama["api"] = "openai-completions"
// Build map of existing models to preserve user customizations
existingModels, _ := ollama["models"].([]any)
existingByID := make(map[string]map[string]any)
for _, m := range existingModels {
if entry, ok := m.(map[string]any); ok {
if id, ok := entry["id"].(string); ok {
existingByID[id] = entry
}
}
}
var newModels []any
for _, model := range models {
entry := map[string]any{
"id": model,
"name": model,
"reasoning": false,
"input": []any{"text"},
"cost": map[string]any{
"input": 0,
"output": 0,
"cacheRead": 0,
"cacheWrite": 0,
},
// TODO(parthsareen): get these values from API
"contextWindow": 131072,
"maxTokens": 16384,
}
// Merge existing fields (user customizations)
if existing, ok := existingByID[model]; ok {
for k, v := range existing {
if _, isNew := entry[k]; !isNew {
entry[k] = v
}
}
}
newModels = append(newModels, entry)
}
ollama["models"] = newModels
providers["ollama"] = ollama
modelsSection["providers"] = providers
config["models"] = modelsSection
// Update agents.defaults.model.primary (preserving other agent settings)
agents, _ := config["agents"].(map[string]any)
if agents == nil {
agents = make(map[string]any)
}
defaults, _ := agents["defaults"].(map[string]any)
if defaults == nil {
defaults = make(map[string]any)
}
modelConfig, _ := defaults["model"].(map[string]any)
if modelConfig == nil {
modelConfig = make(map[string]any)
}
modelConfig["primary"] = "ollama/" + models[0]
defaults["model"] = modelConfig
agents["defaults"] = defaults
config["agents"] = agents
data, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
return writeWithBackup(configPath, data)
}
func (c *Clawdbot) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".clawdbot", "clawdbot.json"))
if err != nil {
return nil
}
modelsSection, _ := config["models"].(map[string]any)
providers, _ := modelsSection["providers"].(map[string]any)
ollama, _ := providers["ollama"].(map[string]any)
modelList, _ := ollama["models"].([]any)
var result []string
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if id, ok := entry["id"].(string); ok {
result = append(result, id)
}
}
}
return result
}

625
cmd/config/clawdbot_test.go Normal file
View File

@@ -0,0 +1,625 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"testing"
)
func TestClawdbotIntegration(t *testing.T) {
c := &Clawdbot{}
t.Run("String", func(t *testing.T) {
if got := c.String(); got != "Clawdbot" {
t.Errorf("String() = %q, want %q", got, "Clawdbot")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = c
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = c
})
}
func TestClawdbotEdit(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "llama3.2")
assertClawdbotPrimaryModel(t, configPath, "ollama/llama3.2")
})
t.Run("multiple models - first is primary", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2", "mistral"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "llama3.2")
assertClawdbotModelExists(t, configPath, "mistral")
assertClawdbotPrimaryModel(t, configPath, "ollama/llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"anthropic":{"apiKey":"xxx"}}}}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
if providers["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","mcp":{"servers":{}}}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["mcp"] == nil {
t.Error("mcp was removed")
}
})
t.Run("preserve user customizations on models", func(t *testing.T) {
cleanup()
c.Edit([]string{"llama3.2"})
// User adds custom field
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
entry := modelList[0].(map[string]any)
entry["customField"] = "user-value"
configData, _ := json.MarshalIndent(cfg, "", " ")
os.WriteFile(configPath, configData, 0o644)
// Re-run Edit
c.Edit([]string{"llama3.2"})
data, _ = os.ReadFile(configPath)
json.Unmarshal(data, &cfg)
models = cfg["models"].(map[string]any)
providers = models["providers"].(map[string]any)
ollama = providers["ollama"].(map[string]any)
modelList = ollama["models"].([]any)
entry = modelList[0].(map[string]any)
if entry["customField"] != "user-value" {
t.Error("custom field was lost")
}
})
t.Run("edit replaces models list", func(t *testing.T) {
cleanup()
c.Edit([]string{"llama3.2", "mistral"})
c.Edit([]string{"llama3.2"})
assertClawdbotModelExists(t, configPath, "llama3.2")
assertClawdbotModelNotExists(t, configPath, "mistral")
})
t.Run("empty models is no-op", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
original := `{"existing":"data"}`
os.WriteFile(configPath, []byte(original), 0o644)
c.Edit([]string{})
data, _ := os.ReadFile(configPath)
if string(data) != original {
t.Error("empty models should not modify file")
}
})
t.Run("corrupted JSON treated as empty", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Error("result should be valid JSON")
}
})
t.Run("wrong type models section", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":"not a map"}`), 0o644)
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "llama3.2")
})
}
func TestClawdbotModels(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("no config returns nil", func(t *testing.T) {
if models := c.Models(); len(models) > 0 {
t.Errorf("expected nil/empty, got %v", models)
}
})
t.Run("returns all ollama models", func(t *testing.T) {
configDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "clawdbot.json"), []byte(`{
"models":{"providers":{"ollama":{"models":[
{"id":"llama3.2"},
{"id":"mistral"}
]}}}
}`), 0o644)
models := c.Models()
if len(models) != 2 {
t.Errorf("expected 2 models, got %v", models)
}
})
}
// Helper functions
func assertClawdbotModelExists(t *testing.T, path, model string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if entry["id"] == model {
return
}
}
}
t.Errorf("model %s not found", model)
}
func assertClawdbotModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models, _ := cfg["models"].(map[string]any)
providers, _ := models["providers"].(map[string]any)
ollama, _ := providers["ollama"].(map[string]any)
modelList, _ := ollama["models"].([]any)
for _, m := range modelList {
if entry, ok := m.(map[string]any); ok {
if entry["id"] == model {
t.Errorf("model %s should not exist", model)
}
}
}
}
func assertClawdbotPrimaryModel(t *testing.T, path, expected string) {
t.Helper()
data, _ := os.ReadFile(path)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
defaults := agents["defaults"].(map[string]any)
model := defaults["model"].(map[string]any)
if model["primary"] != expected {
t.Errorf("primary model = %v, want %v", model["primary"], expected)
}
}
func TestClawdbotPaths(t *testing.T) {
c := &Clawdbot{}
t.Run("returns path when config exists", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
os.MkdirAll(configDir, 0o755)
os.WriteFile(filepath.Join(configDir, "clawdbot.json"), []byte(`{}`), 0o644)
paths := c.Paths()
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns nil when config missing", func(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if paths := c.Paths(); paths != nil {
t.Errorf("expected nil, got %v", paths)
}
})
}
func TestClawdbotModelsEdgeCases(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("corrupted JSON returns nil", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at models level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":"string"}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at providers level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":"string"}}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("wrong type at ollama level", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":"string"}}}`), 0o644)
if models := c.Models(); models != nil {
t.Errorf("expected nil, got %v", models)
}
})
t.Run("model entry missing id", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":{"models":[{"name":"test"}]}}}}`), 0o644)
if len(c.Models()) != 0 {
t.Error("expected empty for missing id")
}
})
t.Run("model id is not string", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"models":{"providers":{"ollama":{"models":[{"id":123}]}}}}`), 0o644)
if len(c.Models()) != 0 {
t.Error("expected empty for non-string id")
}
})
}
func TestClawdbotEditSchemaFields(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".clawdbot", "clawdbot.json")
if err := c.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
ollama := providers["ollama"].(map[string]any)
modelList := ollama["models"].([]any)
entry := modelList[0].(map[string]any)
// Verify required schema fields
if entry["reasoning"] != false {
t.Error("reasoning should be false")
}
if entry["input"] == nil {
t.Error("input should be set")
}
if entry["contextWindow"] == nil {
t.Error("contextWindow should be set")
}
if entry["maxTokens"] == nil {
t.Error("maxTokens should be set")
}
cost := entry["cost"].(map[string]any)
if cost["cacheRead"] == nil {
t.Error("cost.cacheRead should be set")
}
if cost["cacheWrite"] == nil {
t.Error("cost.cacheWrite should be set")
}
}
func TestClawdbotEditModelNames(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configPath := filepath.Join(tmpDir, ".clawdbot", "clawdbot.json")
cleanup := func() { os.RemoveAll(filepath.Join(tmpDir, ".clawdbot")) }
t.Run("model with colon tag", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"llama3.2:70b"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "llama3.2:70b")
assertClawdbotPrimaryModel(t, configPath, "ollama/llama3.2:70b")
})
t.Run("model with slash", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"library/model:tag"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "library/model:tag")
assertClawdbotPrimaryModel(t, configPath, "ollama/library/model:tag")
})
t.Run("model with hyphen", func(t *testing.T) {
cleanup()
if err := c.Edit([]string{"test-model"}); err != nil {
t.Fatal(err)
}
assertClawdbotModelExists(t, configPath, "test-model")
})
}
func TestClawdbotEditAgentsPreservation(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
cleanup := func() { os.RemoveAll(configDir) }
t.Run("preserve other agent defaults", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"agents":{"defaults":{"model":{"primary":"old"},"temperature":0.7}}}`), 0o644)
c.Edit([]string{"llama3.2"})
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
defaults := agents["defaults"].(map[string]any)
if defaults["temperature"] != 0.7 {
t.Error("temperature setting was lost")
}
})
t.Run("preserve other agents besides defaults", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"agents":{"defaults":{},"custom-agent":{"foo":"bar"}}}`), 0o644)
c.Edit([]string{"llama3.2"})
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
agents := cfg["agents"].(map[string]any)
if agents["custom-agent"] == nil {
t.Error("custom-agent was lost")
}
})
}
const testClawdbotFixture = `{
"theme": "dark",
"mcp": {"servers": {"custom": {"enabled": true}}},
"models": {
"providers": {
"anthropic": {"apiKey": "xxx"},
"ollama": {
"baseUrl": "http://127.0.0.1:11434/v1",
"models": [{"id": "old-model", "customField": "preserved"}]
}
}
},
"agents": {
"defaults": {"model": {"primary": "old"}, "temperature": 0.7},
"custom-agent": {"foo": "bar"}
}
}`
func TestClawdbotEdit_RoundTrip(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testClawdbotFixture), 0o644)
if err := c.Edit([]string{"llama3.2", "mistral"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
// Verify top-level preserved
if cfg["theme"] != "dark" {
t.Error("theme not preserved")
}
mcp := cfg["mcp"].(map[string]any)
servers := mcp["servers"].(map[string]any)
if servers["custom"] == nil {
t.Error("mcp.servers.custom not preserved")
}
// Verify other providers preserved
models := cfg["models"].(map[string]any)
providers := models["providers"].(map[string]any)
if providers["anthropic"] == nil {
t.Error("anthropic provider not preserved")
}
// Verify agents preserved
agents := cfg["agents"].(map[string]any)
if agents["custom-agent"] == nil {
t.Error("custom-agent not preserved")
}
defaults := agents["defaults"].(map[string]any)
if defaults["temperature"] != 0.7 {
t.Error("temperature not preserved")
}
}
func TestClawdbotEdit_Idempotent(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testClawdbotFixture), 0o644)
c.Edit([]string{"llama3.2", "mistral"})
firstData, _ := os.ReadFile(configPath)
c.Edit([]string{"llama3.2", "mistral"})
secondData, _ := os.ReadFile(configPath)
if string(firstData) != string(secondData) {
t.Error("repeated edits with same models produced different results")
}
}
func TestClawdbotEdit_MultipleConsecutiveEdits(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(testClawdbotFixture), 0o644)
for i := range 10 {
models := []string{"model-a", "model-b"}
if i%2 == 0 {
models = []string{"model-x", "model-y", "model-z"}
}
if err := c.Edit(models); err != nil {
t.Fatalf("edit %d failed: %v", i, err)
}
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("file is not valid JSON after multiple edits: %v", err)
}
if cfg["theme"] != "dark" {
t.Error("theme lost after multiple edits")
}
}
func TestClawdbotEdit_BackupCreated(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
configPath := filepath.Join(configDir, "clawdbot.json")
backupDir := filepath.Join(os.TempDir(), "ollama-backups")
os.MkdirAll(configDir, 0o755)
uniqueMarker := fmt.Sprintf("test-marker-%d", os.Getpid())
original := fmt.Sprintf(`{"theme": "%s"}`, uniqueMarker)
os.WriteFile(configPath, []byte(original), 0o644)
if err := c.Edit([]string{"model-a"}); err != nil {
t.Fatal(err)
}
backups, _ := filepath.Glob(filepath.Join(backupDir, "clawdbot.json.*"))
foundBackup := false
for _, backup := range backups {
data, _ := os.ReadFile(backup)
if string(data) == original {
foundBackup = true
break
}
}
if !foundBackup {
t.Error("backup with original content not found")
}
}
func TestClawdbotEdit_CreatesDirectoryIfMissing(t *testing.T) {
c := &Clawdbot{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".clawdbot")
if _, err := os.Stat(configDir); !os.IsNotExist(err) {
t.Fatal("directory should not exist before test")
}
if err := c.Edit([]string{"model-a"}); err != nil {
t.Fatal(err)
}
if _, err := os.Stat(configDir); os.IsNotExist(err) {
t.Fatal("directory was not created")
}
}

61
cmd/config/codex.go Normal file
View File

@@ -0,0 +1,61 @@
package config
import (
"fmt"
"os"
"os/exec"
"strings"
"golang.org/x/mod/semver"
)
// Codex implements Runner for Codex integration
type Codex struct{}
func (c *Codex) String() string { return "Codex" }
func (c *Codex) args(model string) []string {
args := []string{"--oss"}
if model != "" {
args = append(args, "-m", model)
}
return args
}
func (c *Codex) Run(model string) error {
if err := checkCodexVersion(); err != nil {
return err
}
cmd := exec.Command("codex", c.args(model)...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func checkCodexVersion() error {
if _, err := exec.LookPath("codex"); err != nil {
return fmt.Errorf("codex is not installed, install with: npm install -g @openai/codex")
}
out, err := exec.Command("codex", "--version").Output()
if err != nil {
return fmt.Errorf("failed to get codex version: %w", err)
}
// Parse output like "codex-cli 0.87.0"
fields := strings.Fields(strings.TrimSpace(string(out)))
if len(fields) < 2 {
return fmt.Errorf("unexpected codex version output: %s", string(out))
}
version := "v" + fields[len(fields)-1]
minVersion := "v0.81.0"
if semver.Compare(version, minVersion) < 0 {
return fmt.Errorf("codex version %s is too old, minimum required is %s, update with: npm update -g @openai/codex", fields[len(fields)-1], "0.81.0")
}
return nil
}

28
cmd/config/codex_test.go Normal file
View File

@@ -0,0 +1,28 @@
package config
import (
"slices"
"testing"
)
func TestCodexArgs(t *testing.T) {
c := &Codex{}
tests := []struct {
name string
model string
want []string
}{
{"with model", "llama3.2", []string{"--oss", "-m", "llama3.2"}},
{"empty model", "", []string{"--oss"}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := c.args(tt.model)
if !slices.Equal(got, tt.want) {
t.Errorf("args(%q) = %v, want %v", tt.model, got, tt.want)
}
})
}
}

115
cmd/config/config.go Normal file
View File

@@ -0,0 +1,115 @@
// Package config provides integration configuration for external coding tools
// (Claude Code, Codex, Droid, OpenCode) to use Ollama models.
package config
import (
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"strings"
)
type integration struct {
Models []string `json:"models"`
}
type config struct {
Integrations map[string]*integration `json:"integrations"`
}
func configPath() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "config", "config.json"), nil
}
func load() (*config, error) {
path, err := configPath()
if err != nil {
return nil, err
}
data, err := os.ReadFile(path)
if err != nil {
if os.IsNotExist(err) {
return &config{Integrations: make(map[string]*integration)}, nil
}
return nil, err
}
var cfg config
if err := json.Unmarshal(data, &cfg); err != nil {
return nil, fmt.Errorf("failed to parse config: %w, at: %s", err, path)
}
if cfg.Integrations == nil {
cfg.Integrations = make(map[string]*integration)
}
return &cfg, nil
}
func save(cfg *config) error {
path, err := configPath()
if err != nil {
return err
}
if err := os.MkdirAll(filepath.Dir(path), 0o755); err != nil {
return err
}
data, err := json.MarshalIndent(cfg, "", " ")
if err != nil {
return err
}
return writeWithBackup(path, data)
}
func saveIntegration(appName string, models []string) error {
if appName == "" {
return errors.New("app name cannot be empty")
}
cfg, err := load()
if err != nil {
return err
}
cfg.Integrations[strings.ToLower(appName)] = &integration{
Models: models,
}
return save(cfg)
}
func loadIntegration(appName string) (*integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
ic, ok := cfg.Integrations[strings.ToLower(appName)]
if !ok {
return nil, os.ErrNotExist
}
return ic, nil
}
func listIntegrations() ([]integration, error) {
cfg, err := load()
if err != nil {
return nil, err
}
result := make([]integration, 0, len(cfg.Integrations))
for _, ic := range cfg.Integrations {
result = append(result, *ic)
}
return result, nil
}

373
cmd/config/config_test.go Normal file
View File

@@ -0,0 +1,373 @@
package config
import (
"os"
"path/filepath"
"strings"
"testing"
)
// setTestHome sets both HOME (Unix) and USERPROFILE (Windows) for cross-platform tests
func setTestHome(t *testing.T, dir string) {
t.Setenv("HOME", dir)
t.Setenv("USERPROFILE", dir)
}
// editorPaths is a test helper that safely calls Paths if the runner implements Editor
func editorPaths(r Runner) []string {
if editor, ok := r.(Editor); ok {
return editor.Paths()
}
return nil
}
func TestIntegrationConfig(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("save and load round-trip", func(t *testing.T) {
models := []string{"llama3.2", "mistral", "qwen2.5"}
if err := saveIntegration("claude", models); err != nil {
t.Fatal(err)
}
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
if len(config.Models) != len(models) {
t.Errorf("expected %d models, got %d", len(models), len(config.Models))
}
for i, m := range models {
if config.Models[i] != m {
t.Errorf("model %d: expected %s, got %s", i, m, config.Models[i])
}
}
})
t.Run("defaultModel returns first model", func(t *testing.T) {
saveIntegration("codex", []string{"model-a", "model-b"})
config, _ := loadIntegration("codex")
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-a" {
t.Errorf("expected model-a, got %s", defaultModel)
}
})
t.Run("defaultModel returns empty for no models", func(t *testing.T) {
config := &integration{Models: []string{}}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "" {
t.Errorf("expected empty string, got %s", defaultModel)
}
})
t.Run("app name is case-insensitive", func(t *testing.T) {
saveIntegration("Claude", []string{"model-x"})
config, err := loadIntegration("claude")
if err != nil {
t.Fatal(err)
}
defaultModel := ""
if len(config.Models) > 0 {
defaultModel = config.Models[0]
}
if defaultModel != "model-x" {
t.Errorf("expected model-x, got %s", defaultModel)
}
})
t.Run("multiple integrations in single file", func(t *testing.T) {
saveIntegration("app1", []string{"model-1"})
saveIntegration("app2", []string{"model-2"})
config1, _ := loadIntegration("app1")
config2, _ := loadIntegration("app2")
defaultModel1 := ""
if len(config1.Models) > 0 {
defaultModel1 = config1.Models[0]
}
defaultModel2 := ""
if len(config2.Models) > 0 {
defaultModel2 = config2.Models[0]
}
if defaultModel1 != "model-1" {
t.Errorf("expected model-1, got %s", defaultModel1)
}
if defaultModel2 != "model-2" {
t.Errorf("expected model-2, got %s", defaultModel2)
}
})
}
func TestListIntegrations(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty when no integrations", func(t *testing.T) {
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 0 {
t.Errorf("expected 0 integrations, got %d", len(configs))
}
})
t.Run("returns all saved integrations", func(t *testing.T) {
saveIntegration("claude", []string{"model-1"})
saveIntegration("droid", []string{"model-2"})
configs, err := listIntegrations()
if err != nil {
t.Fatal(err)
}
if len(configs) != 2 {
t.Errorf("expected 2 integrations, got %d", len(configs))
}
})
}
func TestEditorPaths(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty for claude (no Editor)", func(t *testing.T) {
r := integrations["claude"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for claude, got %v", paths)
}
})
t.Run("returns empty for codex (no Editor)", func(t *testing.T) {
r := integrations["codex"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths for codex, got %v", paths)
}
})
t.Run("returns empty for droid when no config exists", func(t *testing.T) {
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 0 {
t.Errorf("expected no paths, got %v", paths)
}
})
t.Run("returns path for droid when config exists", func(t *testing.T) {
settingsDir, _ := os.UserHomeDir()
settingsDir = filepath.Join(settingsDir, ".factory")
os.MkdirAll(settingsDir, 0o755)
os.WriteFile(filepath.Join(settingsDir, "settings.json"), []byte(`{}`), 0o644)
r := integrations["droid"]
paths := editorPaths(r)
if len(paths) != 1 {
t.Errorf("expected 1 path, got %d", len(paths))
}
})
t.Run("returns paths for opencode when configs exist", func(t *testing.T) {
home, _ := os.UserHomeDir()
configDir := filepath.Join(home, ".config", "opencode")
stateDir := filepath.Join(home, ".local", "state", "opencode")
os.MkdirAll(configDir, 0o755)
os.MkdirAll(stateDir, 0o755)
os.WriteFile(filepath.Join(configDir, "opencode.json"), []byte(`{}`), 0o644)
os.WriteFile(filepath.Join(stateDir, "model.json"), []byte(`{}`), 0o644)
r := integrations["opencode"]
paths := editorPaths(r)
if len(paths) != 2 {
t.Errorf("expected 2 paths, got %d: %v", len(paths), paths)
}
})
}
func TestLoadIntegration_CorruptedJSON(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Create corrupted config.json file
dir := filepath.Join(tmpDir, ".ollama", "config")
os.MkdirAll(dir, 0o755)
os.WriteFile(filepath.Join(dir, "config.json"), []byte(`{corrupted json`), 0o644)
// Corrupted file is treated as empty, so loadIntegration returns not found
_, err := loadIntegration("test")
if err == nil {
t.Error("expected error for nonexistent integration in corrupted file")
}
}
func TestSaveIntegration_NilModels(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
if err := saveIntegration("test", nil); err != nil {
t.Fatalf("saveIntegration with nil models failed: %v", err)
}
config, err := loadIntegration("test")
if err != nil {
t.Fatalf("loadIntegration failed: %v", err)
}
if config.Models == nil {
// nil is acceptable
} else if len(config.Models) != 0 {
t.Errorf("expected empty or nil models, got %v", config.Models)
}
}
func TestSaveIntegration_EmptyAppName(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
err := saveIntegration("", []string{"model"})
if err == nil {
t.Error("expected error for empty app name, got nil")
}
if err != nil && !strings.Contains(err.Error(), "app name cannot be empty") {
t.Errorf("expected 'app name cannot be empty' error, got: %v", err)
}
}
func TestLoadIntegration_NonexistentIntegration(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
_, err := loadIntegration("nonexistent")
if err == nil {
t.Error("expected error for nonexistent integration, got nil")
}
if !os.IsNotExist(err) {
t.Logf("error type is os.ErrNotExist as expected: %v", err)
}
}
func TestConfigPath(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
path, err := configPath()
if err != nil {
t.Fatal(err)
}
expected := filepath.Join(tmpDir, ".ollama", "config", "config.json")
if path != expected {
t.Errorf("expected %s, got %s", expected, path)
}
}
func TestLoad(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("returns empty config when file does not exist", func(t *testing.T) {
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg == nil {
t.Fatal("expected non-nil config")
}
if cfg.Integrations == nil {
t.Error("expected non-nil Integrations map")
}
if len(cfg.Integrations) != 0 {
t.Errorf("expected empty Integrations, got %d", len(cfg.Integrations))
}
})
t.Run("loads existing config", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{"integrations":{"test":{"models":["model-a"]}}}`), 0o644)
cfg, err := load()
if err != nil {
t.Fatal(err)
}
if cfg.Integrations["test"] == nil {
t.Fatal("expected test integration")
}
if len(cfg.Integrations["test"].Models) != 1 {
t.Errorf("expected 1 model, got %d", len(cfg.Integrations["test"].Models))
}
})
t.Run("returns error for corrupted JSON", func(t *testing.T) {
path, _ := configPath()
os.MkdirAll(filepath.Dir(path), 0o755)
os.WriteFile(path, []byte(`{corrupted`), 0o644)
_, err := load()
if err == nil {
t.Error("expected error for corrupted JSON")
}
})
}
func TestSave(t *testing.T) {
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
t.Run("creates config file", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"test": {Models: []string{"model-a", "model-b"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
path, _ := configPath()
if _, err := os.Stat(path); os.IsNotExist(err) {
t.Error("config file was not created")
}
})
t.Run("round-trip preserves data", func(t *testing.T) {
cfg := &config{
Integrations: map[string]*integration{
"claude": {Models: []string{"llama3.2", "mistral"}},
"codex": {Models: []string{"qwen2.5"}},
},
}
if err := save(cfg); err != nil {
t.Fatal(err)
}
loaded, err := load()
if err != nil {
t.Fatal(err)
}
if len(loaded.Integrations) != 2 {
t.Errorf("expected 2 integrations, got %d", len(loaded.Integrations))
}
if loaded.Integrations["claude"] == nil {
t.Error("missing claude integration")
}
if len(loaded.Integrations["claude"].Models) != 2 {
t.Errorf("expected 2 models for claude, got %d", len(loaded.Integrations["claude"].Models))
}
})
}

184
cmd/config/droid.go Normal file
View File

@@ -0,0 +1,184 @@
package config
import (
"encoding/json"
"fmt"
"os"
"os/exec"
"path/filepath"
"slices"
)
// Droid implements Runner and Editor for Droid integration
type Droid struct{}
// droidSettings represents the Droid settings.json file (only fields we use)
type droidSettings struct {
CustomModels []modelEntry `json:"customModels"`
SessionDefaultSettings sessionSettings `json:"sessionDefaultSettings"`
}
type sessionSettings struct {
Model string `json:"model"`
ReasoningEffort string `json:"reasoningEffort"`
}
type modelEntry struct {
Model string `json:"model"`
DisplayName string `json:"displayName"`
BaseURL string `json:"baseUrl"`
APIKey string `json:"apiKey"`
Provider string `json:"provider"`
MaxOutputTokens int `json:"maxOutputTokens"`
SupportsImages bool `json:"supportsImages"`
ID string `json:"id"`
Index int `json:"index"`
}
func (d *Droid) String() string { return "Droid" }
func (d *Droid) Run(model string) error {
if _, err := exec.LookPath("droid"); err != nil {
return fmt.Errorf("droid is not installed, install from https://docs.factory.ai/cli/getting-started/quickstart")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("droid"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := d.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("droid")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (d *Droid) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
p := filepath.Join(home, ".factory", "settings.json")
if _, err := os.Stat(p); err == nil {
return []string{p}
}
return nil
}
func (d *Droid) Edit(models []string) error {
if len(models) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
settingsPath := filepath.Join(home, ".factory", "settings.json")
if err := os.MkdirAll(filepath.Dir(settingsPath), 0o755); err != nil {
return err
}
// Read file once, unmarshal twice:
// map preserves unknown fields for writing back (including extra fields in model entries)
settingsMap := make(map[string]any)
var settings droidSettings
if data, err := os.ReadFile(settingsPath); err == nil {
if err := json.Unmarshal(data, &settingsMap); err != nil {
return fmt.Errorf("failed to parse settings file: %w, at: %s", err, settingsPath)
}
json.Unmarshal(data, &settings) // ignore error, zero values are fine
}
// Keep only non-Ollama models from the raw map (preserves extra fields)
// Rebuild Ollama models
var nonOllamaModels []any
if rawModels, ok := settingsMap["customModels"].([]any); ok {
for _, raw := range rawModels {
if m, ok := raw.(map[string]any); ok {
if m["apiKey"] != "ollama" {
nonOllamaModels = append(nonOllamaModels, raw)
}
}
}
}
// Build new Ollama model entries with sequential indices (0, 1, 2, ...)
var newModels []any
var defaultModelID string
for i, model := range models {
modelID := fmt.Sprintf("custom:%s-%d", model, i)
newModels = append(newModels, modelEntry{
Model: model,
DisplayName: model,
BaseURL: "http://localhost:11434/v1",
APIKey: "ollama",
Provider: "generic-chat-completion-api",
MaxOutputTokens: 64000,
SupportsImages: false,
ID: modelID,
Index: i,
})
if i == 0 {
defaultModelID = modelID
}
}
settingsMap["customModels"] = append(newModels, nonOllamaModels...)
// Update session default settings (preserve unknown fields in the nested object)
sessionSettings, ok := settingsMap["sessionDefaultSettings"].(map[string]any)
if !ok {
sessionSettings = make(map[string]any)
}
sessionSettings["model"] = defaultModelID
if !isValidReasoningEffort(settings.SessionDefaultSettings.ReasoningEffort) {
sessionSettings["reasoningEffort"] = "none"
}
settingsMap["sessionDefaultSettings"] = sessionSettings
data, err := json.MarshalIndent(settingsMap, "", " ")
if err != nil {
return err
}
return writeWithBackup(settingsPath, data)
}
func (d *Droid) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
data, err := os.ReadFile(filepath.Join(home, ".factory", "settings.json"))
if err != nil {
return nil
}
var settings droidSettings
if err := json.Unmarshal(data, &settings); err != nil {
return nil
}
var result []string
for _, m := range settings.CustomModels {
if m.APIKey == "ollama" {
result = append(result, m.Model)
}
}
return result
}
var validReasoningEfforts = []string{"high", "medium", "low", "none"}
func isValidReasoningEffort(effort string) bool {
return slices.Contains(validReasoningEfforts, effort)
}

1302
cmd/config/droid_test.go Normal file

File diff suppressed because it is too large Load Diff

99
cmd/config/files.go Normal file
View File

@@ -0,0 +1,99 @@
package config
import (
"bytes"
"encoding/json"
"fmt"
"os"
"path/filepath"
"time"
)
func readJSONFile(path string) (map[string]any, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, err
}
var result map[string]any
if err := json.Unmarshal(data, &result); err != nil {
return nil, err
}
return result, nil
}
func copyFile(src, dst string) error {
info, err := os.Stat(src)
if err != nil {
return err
}
data, err := os.ReadFile(src)
if err != nil {
return err
}
return os.WriteFile(dst, data, info.Mode().Perm())
}
func backupDir() string {
return filepath.Join(os.TempDir(), "ollama-backups")
}
func backupToTmp(srcPath string) (string, error) {
dir := backupDir()
if err := os.MkdirAll(dir, 0o755); err != nil {
return "", err
}
backupPath := filepath.Join(dir, fmt.Sprintf("%s.%d", filepath.Base(srcPath), time.Now().Unix()))
if err := copyFile(srcPath, backupPath); err != nil {
return "", err
}
return backupPath, nil
}
// writeWithBackup writes data to path via temp file + rename, backing up any existing file first
func writeWithBackup(path string, data []byte) error {
var backupPath string
// backup must be created before any writes to the target file
if existingContent, err := os.ReadFile(path); err == nil {
if !bytes.Equal(existingContent, data) {
backupPath, err = backupToTmp(path)
if err != nil {
return fmt.Errorf("backup failed: %w", err)
}
}
} else if !os.IsNotExist(err) {
return fmt.Errorf("read existing file: %w", err)
}
dir := filepath.Dir(path)
tmp, err := os.CreateTemp(dir, ".tmp-*")
if err != nil {
return fmt.Errorf("create temp failed: %w", err)
}
tmpPath := tmp.Name()
if _, err := tmp.Write(data); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("write failed: %w", err)
}
if err := tmp.Sync(); err != nil {
_ = tmp.Close()
_ = os.Remove(tmpPath)
return fmt.Errorf("sync failed: %w", err)
}
if err := tmp.Close(); err != nil {
_ = os.Remove(tmpPath)
return fmt.Errorf("close failed: %w", err)
}
if err := os.Rename(tmpPath, path); err != nil {
_ = os.Remove(tmpPath)
if backupPath != "" {
_ = copyFile(backupPath, path)
}
return fmt.Errorf("rename failed: %w", err)
}
return nil
}

502
cmd/config/files_test.go Normal file
View File

@@ -0,0 +1,502 @@
package config
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"runtime"
"testing"
)
func mustMarshal(t *testing.T, v any) []byte {
t.Helper()
data, err := json.MarshalIndent(v, "", " ")
if err != nil {
t.Fatal(err)
}
return data
}
func TestWriteWithBackup(t *testing.T) {
tmpDir := t.TempDir()
t.Run("creates file", func(t *testing.T) {
path := filepath.Join(tmpDir, "new.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var result map[string]string
if err := json.Unmarshal(content, &result); err != nil {
t.Fatal(err)
}
if result["key"] != "value" {
t.Errorf("expected value, got %s", result["key"])
}
})
t.Run("creates backup in /tmp/ollama-backups", func(t *testing.T) {
path := filepath.Join(tmpDir, "backup.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
data := mustMarshal(t, map[string]bool{"updated": true})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, err := os.ReadDir(backupDir())
if err != nil {
t.Fatal("backup directory not created")
}
var foundBackup bool
for _, entry := range entries {
if filepath.Ext(entry.Name()) != ".json" {
name := entry.Name()
if len(name) > len("backup.json.") && name[:len("backup.json.")] == "backup.json." {
backupPath := filepath.Join(backupDir(), name)
backup, err := os.ReadFile(backupPath)
if err == nil {
var backupData map[string]bool
json.Unmarshal(backup, &backupData)
if backupData["original"] {
foundBackup = true
os.Remove(backupPath)
break
}
}
}
}
}
if !foundBackup {
t.Error("backup file not created in /tmp/ollama-backups")
}
current, _ := os.ReadFile(path)
var currentData map[string]bool
json.Unmarshal(current, &currentData)
if !currentData["updated"] {
t.Error("file doesn't contain updated data")
}
})
t.Run("no backup for new file", func(t *testing.T) {
path := filepath.Join(tmpDir, "nobak.json")
data := mustMarshal(t, map[string]string{"new": "file"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
for _, entry := range entries {
if len(entry.Name()) > len("nobak.json.") && entry.Name()[:len("nobak.json.")] == "nobak.json." {
t.Error("backup should not exist for new file")
}
}
})
t.Run("no backup when content unchanged", func(t *testing.T) {
path := filepath.Join(tmpDir, "unchanged.json")
data := mustMarshal(t, map[string]string{"key": "value"})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries1, _ := os.ReadDir(backupDir())
countBefore := 0
for _, e := range entries1 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countBefore++
}
}
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries2, _ := os.ReadDir(backupDir())
countAfter := 0
for _, e := range entries2 {
if len(e.Name()) > len("unchanged.json.") && e.Name()[:len("unchanged.json.")] == "unchanged.json." {
countAfter++
}
}
if countAfter != countBefore {
t.Errorf("backup was created when content unchanged (before=%d, after=%d)", countBefore, countAfter)
}
})
t.Run("backup filename contains unix timestamp", func(t *testing.T) {
path := filepath.Join(tmpDir, "timestamped.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
data := mustMarshal(t, map[string]int{"v": 2})
if err := writeWithBackup(path, data); err != nil {
t.Fatal(err)
}
entries, _ := os.ReadDir(backupDir())
var found bool
for _, entry := range entries {
name := entry.Name()
if len(name) > len("timestamped.json.") && name[:len("timestamped.json.")] == "timestamped.json." {
timestamp := name[len("timestamped.json."):]
for _, c := range timestamp {
if c < '0' || c > '9' {
t.Errorf("backup filename timestamp contains non-numeric character: %s", name)
}
}
found = true
os.Remove(filepath.Join(backupDir(), name))
break
}
}
if !found {
t.Error("backup file with timestamp not found")
}
})
}
// Edge case tests for files.go
// TestWriteWithBackup_FailsIfBackupFails documents critical behavior: if backup fails, we must not proceed.
// User could lose their config with no way to recover.
func TestWriteWithBackup_FailsIfBackupFails(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "config.json")
// Create original file
originalContent := []byte(`{"original": true}`)
os.WriteFile(path, originalContent, 0o644)
// Make backup directory read-only to force backup failure
backupDir := backupDir()
os.MkdirAll(backupDir, 0o755)
os.Chmod(backupDir, 0o444) // Read-only
defer os.Chmod(backupDir, 0o755)
newContent := []byte(`{"updated": true}`)
err := writeWithBackup(path, newContent)
// Should fail because backup couldn't be created
if err == nil {
t.Error("expected error when backup fails, got nil")
}
// Original file should be preserved
current, _ := os.ReadFile(path)
if string(current) != string(originalContent) {
t.Errorf("original file was modified despite backup failure: got %s", string(current))
}
}
// TestWriteWithBackup_PermissionDenied verifies clear error when target file has wrong permissions.
// Common issue when config owned by root or wrong perms.
func TestWriteWithBackup_PermissionDenied(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Create a read-only directory
readOnlyDir := filepath.Join(tmpDir, "readonly")
os.MkdirAll(readOnlyDir, 0o755)
os.Chmod(readOnlyDir, 0o444)
defer os.Chmod(readOnlyDir, 0o755)
path := filepath.Join(readOnlyDir, "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
if err == nil {
t.Error("expected permission error, got nil")
}
}
// TestWriteWithBackup_DirectoryDoesNotExist verifies behavior when target directory doesn't exist.
// writeWithBackup doesn't create directories - caller is responsible.
func TestWriteWithBackup_DirectoryDoesNotExist(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "nonexistent", "subdir", "config.json")
err := writeWithBackup(path, []byte(`{"test": true}`))
// Should fail because directory doesn't exist
if err == nil {
t.Error("expected error for nonexistent directory, got nil")
}
}
// TestWriteWithBackup_SymlinkTarget documents behavior when target is a symlink.
// Documents what happens if user symlinks their config file.
func TestWriteWithBackup_SymlinkTarget(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("symlink tests may require admin on Windows")
}
tmpDir := t.TempDir()
realFile := filepath.Join(tmpDir, "real.json")
symlink := filepath.Join(tmpDir, "link.json")
// Create real file and symlink
os.WriteFile(realFile, []byte(`{"v": 1}`), 0o644)
os.Symlink(realFile, symlink)
// Write through symlink
err := writeWithBackup(symlink, []byte(`{"v": 2}`))
if err != nil {
t.Fatalf("writeWithBackup through symlink failed: %v", err)
}
// The real file should be updated (symlink followed for temp file creation)
content, _ := os.ReadFile(symlink)
if string(content) != `{"v": 2}` {
t.Errorf("symlink target not updated correctly: got %s", string(content))
}
}
// TestBackupToTmp_SpecialCharsInFilename verifies backup works with special characters.
// User may have config files with unusual names.
func TestBackupToTmp_SpecialCharsInFilename(t *testing.T) {
tmpDir := t.TempDir()
// File with spaces and special chars
path := filepath.Join(tmpDir, "my config (backup).json")
os.WriteFile(path, []byte(`{"test": true}`), 0o644)
backupPath, err := backupToTmp(path)
if err != nil {
t.Fatalf("backupToTmp with special chars failed: %v", err)
}
// Verify backup exists and has correct content
content, err := os.ReadFile(backupPath)
if err != nil {
t.Fatalf("could not read backup: %v", err)
}
if string(content) != `{"test": true}` {
t.Errorf("backup content mismatch: got %s", string(content))
}
os.Remove(backupPath)
}
// TestCopyFile_PreservesPermissions verifies that copyFile preserves file permissions.
func TestCopyFile_PreservesPermissions(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission preservation tests unreliable on Windows")
}
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "src.json")
dst := filepath.Join(tmpDir, "dst.json")
// Create source with specific permissions
os.WriteFile(src, []byte(`{"test": true}`), 0o600)
err := copyFile(src, dst)
if err != nil {
t.Fatalf("copyFile failed: %v", err)
}
srcInfo, _ := os.Stat(src)
dstInfo, _ := os.Stat(dst)
if srcInfo.Mode().Perm() != dstInfo.Mode().Perm() {
t.Errorf("permissions not preserved: src=%v, dst=%v", srcInfo.Mode().Perm(), dstInfo.Mode().Perm())
}
}
// TestCopyFile_SourceNotFound verifies clear error when source doesn't exist.
func TestCopyFile_SourceNotFound(t *testing.T) {
tmpDir := t.TempDir()
src := filepath.Join(tmpDir, "nonexistent.json")
dst := filepath.Join(tmpDir, "dst.json")
err := copyFile(src, dst)
if err == nil {
t.Error("expected error for nonexistent source, got nil")
}
}
// TestWriteWithBackup_TargetIsDirectory verifies error when path points to a directory.
func TestWriteWithBackup_TargetIsDirectory(t *testing.T) {
tmpDir := t.TempDir()
dirPath := filepath.Join(tmpDir, "actualdir")
os.MkdirAll(dirPath, 0o755)
err := writeWithBackup(dirPath, []byte(`{"test": true}`))
if err == nil {
t.Error("expected error when target is a directory, got nil")
}
}
// TestWriteWithBackup_EmptyData verifies writing zero bytes works correctly.
func TestWriteWithBackup_EmptyData(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "empty.json")
err := writeWithBackup(path, []byte{})
if err != nil {
t.Fatalf("writeWithBackup with empty data failed: %v", err)
}
content, err := os.ReadFile(path)
if err != nil {
t.Fatalf("could not read file: %v", err)
}
if len(content) != 0 {
t.Errorf("expected empty file, got %d bytes", len(content))
}
}
// TestWriteWithBackup_FileUnreadableButDirWritable verifies behavior when existing file
// cannot be read (for backup comparison) but directory is writable.
func TestWriteWithBackup_FileUnreadableButDirWritable(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "unreadable.json")
// Create file and make it unreadable
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
os.Chmod(path, 0o000)
defer os.Chmod(path, 0o644)
// Should fail because we can't read the file to compare/backup
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when file is unreadable, got nil")
}
}
// TestWriteWithBackup_RapidSuccessiveWrites verifies backup works with multiple writes
// within the same second (timestamp collision scenario).
func TestWriteWithBackup_RapidSuccessiveWrites(t *testing.T) {
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "rapid.json")
// Create initial file
os.WriteFile(path, []byte(`{"v": 0}`), 0o644)
// Rapid successive writes
for i := 1; i <= 3; i++ {
data := []byte(fmt.Sprintf(`{"v": %d}`, i))
if err := writeWithBackup(path, data); err != nil {
t.Fatalf("write %d failed: %v", i, err)
}
}
// Verify final content
content, _ := os.ReadFile(path)
if string(content) != `{"v": 3}` {
t.Errorf("expected final content {\"v\": 3}, got %s", string(content))
}
// Verify at least one backup exists
entries, _ := os.ReadDir(backupDir())
var backupCount int
for _, e := range entries {
if len(e.Name()) > len("rapid.json.") && e.Name()[:len("rapid.json.")] == "rapid.json." {
backupCount++
}
}
if backupCount == 0 {
t.Error("expected at least one backup file from rapid writes")
}
}
// TestWriteWithBackup_BackupDirIsFile verifies error when backup directory path is a file.
func TestWriteWithBackup_BackupDirIsFile(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("test modifies system temp directory")
}
// Create a file at the backup directory path
backupPath := backupDir()
// Clean up any existing directory first
os.RemoveAll(backupPath)
// Create a file instead of directory
os.WriteFile(backupPath, []byte("not a directory"), 0o644)
defer func() {
os.Remove(backupPath)
os.MkdirAll(backupPath, 0o755)
}()
tmpDir := t.TempDir()
path := filepath.Join(tmpDir, "test.json")
os.WriteFile(path, []byte(`{"original": true}`), 0o644)
err := writeWithBackup(path, []byte(`{"updated": true}`))
if err == nil {
t.Error("expected error when backup dir is a file, got nil")
}
}
// TestWriteWithBackup_NoOrphanTempFiles verifies temp files are cleaned up on failure.
func TestWriteWithBackup_NoOrphanTempFiles(t *testing.T) {
if runtime.GOOS == "windows" {
t.Skip("permission tests unreliable on Windows")
}
tmpDir := t.TempDir()
// Count existing temp files
countTempFiles := func() int {
entries, _ := os.ReadDir(tmpDir)
count := 0
for _, e := range entries {
if len(e.Name()) > 4 && e.Name()[:4] == ".tmp" {
count++
}
}
return count
}
before := countTempFiles()
// Create a file, then make directory read-only to cause rename failure
path := filepath.Join(tmpDir, "orphan.json")
os.WriteFile(path, []byte(`{"v": 1}`), 0o644)
// Make a subdirectory and try to write there after making parent read-only
subDir := filepath.Join(tmpDir, "subdir")
os.MkdirAll(subDir, 0o755)
subPath := filepath.Join(subDir, "config.json")
os.WriteFile(subPath, []byte(`{"v": 1}`), 0o644)
// Make subdir read-only after creating temp file would succeed but rename would fail
// This is tricky to test - the temp file is created in the same dir, so if we can't
// rename, we also couldn't create. Let's just verify normal failure cleanup works.
// Force a failure by making the target a directory
badPath := filepath.Join(tmpDir, "isdir")
os.MkdirAll(badPath, 0o755)
_ = writeWithBackup(badPath, []byte(`{"test": true}`))
after := countTempFiles()
if after > before {
t.Errorf("orphan temp files left behind: before=%d, after=%d", before, after)
}
}

355
cmd/config/integrations.go Normal file
View File

@@ -0,0 +1,355 @@
package config
import (
"context"
"errors"
"fmt"
"maps"
"os"
"os/exec"
"runtime"
"slices"
"strings"
"time"
"github.com/ollama/ollama/api"
"github.com/spf13/cobra"
)
// Runners execute the launching of a model with the integration - claude, codex
// Editors can edit config files (supports multi-model selection) - opencode, droid
// They are composable interfaces where in some cases an editor is also a runner - opencode, droid
// Runner can run an integration with a model.
type Runner interface {
Run(model string) error
// String returns the human-readable name of the integration
String() string
}
// Editor can edit config files (supports multi-model selection)
type Editor interface {
// Paths returns the paths to the config files for the integration
Paths() []string
// Edit updates the config files for the integration with the given models
Edit(models []string) error
// Models returns the models currently configured for the integration
// TODO(parthsareen): add error return to Models()
Models() []string
}
// integrations is the registry of available integrations.
var integrations = map[string]Runner{
"claude": &Claude{},
"clawdbot": &Clawdbot{},
"codex": &Codex{},
"droid": &Droid{},
"opencode": &OpenCode{},
}
func selectIntegration() (string, error) {
if len(integrations) == 0 {
return "", fmt.Errorf("no integrations available")
}
names := slices.Sorted(maps.Keys(integrations))
var items []selectItem
for _, name := range names {
r := integrations[name]
description := r.String()
if conn, err := loadIntegration(name); err == nil && len(conn.Models) > 0 {
description = fmt.Sprintf("%s (%s)", r.String(), conn.Models[0])
}
items = append(items, selectItem{Name: name, Description: description})
}
return selectPrompt("Select integration:", items)
}
// selectModels lets the user select models for an integration
func selectModels(ctx context.Context, name, current string) ([]string, error) {
r, ok := integrations[name]
if !ok {
return nil, fmt.Errorf("unknown integration: %s", name)
}
client, err := api.ClientFromEnvironment()
if err != nil {
return nil, err
}
models, err := client.List(ctx)
if err != nil {
return nil, err
}
if len(models.Models) == 0 {
return nil, fmt.Errorf("no models available, run 'ollama pull <model>' first")
}
var items []selectItem
cloudModels := make(map[string]bool)
for _, m := range models.Models {
if m.RemoteModel != "" {
cloudModels[m.Name] = true
}
items = append(items, selectItem{Name: m.Name})
}
if len(items) == 0 {
return nil, fmt.Errorf("no local models available, run 'ollama pull <model>' first")
}
// Get previously configured models (saved config takes precedence)
var preChecked []string
if saved, err := loadIntegration(name); err == nil {
preChecked = saved.Models
} else if editor, ok := r.(Editor); ok {
preChecked = editor.Models()
}
checked := make(map[string]bool, len(preChecked))
for _, n := range preChecked {
checked[n] = true
}
// Resolve current to full name (e.g., "llama3.2" -> "llama3.2:latest")
for _, item := range items {
if item.Name == current || strings.HasPrefix(item.Name, current+":") {
current = item.Name
break
}
}
// If current model is configured, move to front of preChecked
if checked[current] {
preChecked = append([]string{current}, slices.DeleteFunc(preChecked, func(m string) bool { return m == current })...)
}
// Sort: checked first, then alphabetical
slices.SortFunc(items, func(a, b selectItem) int {
ac, bc := checked[a.Name], checked[b.Name]
if ac != bc {
if ac {
return -1
}
return 1
}
return strings.Compare(strings.ToLower(a.Name), strings.ToLower(b.Name))
})
var selected []string
// only editors support multi-model selection
if _, ok := r.(Editor); ok {
selected, err = multiSelectPrompt(fmt.Sprintf("Select models for %s:", r), items, preChecked)
if err != nil {
return nil, err
}
} else {
model, err := selectPrompt(fmt.Sprintf("Select model for %s:", r), items)
if err != nil {
return nil, err
}
selected = []string{model}
}
// if any model in selected is a cloud model, ensure signed in
var selectedCloudModels []string
for _, m := range selected {
if cloudModels[m] {
selectedCloudModels = append(selectedCloudModels, m)
}
}
if len(selectedCloudModels) > 0 {
// ensure user is signed in
user, err := client.Whoami(ctx)
if err == nil && user != nil && user.Name != "" {
return selected, nil
}
var aErr api.AuthorizationError
if !errors.As(err, &aErr) || aErr.SigninURL == "" {
return nil, err
}
modelList := strings.Join(selectedCloudModels, ", ")
yes, err := confirmPrompt(fmt.Sprintf("sign in to use %s?", modelList))
if err != nil || !yes {
return nil, fmt.Errorf("%s requires sign in", modelList)
}
fmt.Fprintf(os.Stderr, "\nTo sign in, navigate to:\n %s\n\n", aErr.SigninURL)
// TODO(parthsareen): extract into auth package for cmd
// Auto-open browser (best effort, fail silently)
switch runtime.GOOS {
case "darwin":
_ = exec.Command("open", aErr.SigninURL).Start()
case "linux":
_ = exec.Command("xdg-open", aErr.SigninURL).Start()
case "windows":
_ = exec.Command("rundll32", "url.dll,FileProtocolHandler", aErr.SigninURL).Start()
}
spinnerFrames := []string{"|", "/", "-", "\\"}
frame := 0
fmt.Fprintf(os.Stderr, "\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[0])
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
fmt.Fprintf(os.Stderr, "\r\033[K")
return nil, ctx.Err()
case <-ticker.C:
frame++
fmt.Fprintf(os.Stderr, "\r\033[90mwaiting for sign in to complete... %s\033[0m", spinnerFrames[frame%len(spinnerFrames)])
// poll every 10th frame (~2 seconds)
if frame%10 == 0 {
u, err := client.Whoami(ctx)
if err == nil && u != nil && u.Name != "" {
fmt.Fprintf(os.Stderr, "\r\033[K\033[A\r\033[K\033[1msigned in:\033[0m %s\n", u.Name)
return selected, nil
}
}
}
}
}
return selected, nil
}
func runIntegration(name, modelName string) error {
r, ok := integrations[name]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
fmt.Fprintf(os.Stderr, "\nLaunching %s with %s...\n", r, modelName)
return r.Run(modelName)
}
// LaunchCmd returns the cobra command for launching integrations.
func LaunchCmd(checkServerHeartbeat func(cmd *cobra.Command, args []string) error) *cobra.Command {
var modelFlag string
var configFlag bool
cmd := &cobra.Command{
Use: "launch [INTEGRATION]",
Short: "Launch an integration with Ollama",
Long: `Launch an integration configured with Ollama models.
Supported integrations:
claude Claude Code
clawdbot Clawdbot
codex Codex
droid Droid
opencode OpenCode
Examples:
ollama launch
ollama launch claude
ollama launch claude --model <model>
ollama launch droid --config (does not auto-launch)`,
Args: cobra.MaximumNArgs(1),
PreRunE: checkServerHeartbeat,
RunE: func(cmd *cobra.Command, args []string) error {
var name string
if len(args) > 0 {
name = args[0]
} else {
var err error
name, err = selectIntegration()
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
r, ok := integrations[strings.ToLower(name)]
if !ok {
return fmt.Errorf("unknown integration: %s", name)
}
// If launching without --model, use saved config if available
if !configFlag && modelFlag == "" {
if config, err := loadIntegration(name); err == nil && len(config.Models) > 0 {
return runIntegration(name, config.Models[0])
}
}
var models []string
if modelFlag != "" {
// When --model is specified, merge with existing models (new model becomes default)
models = []string{modelFlag}
if existing, err := loadIntegration(name); err == nil && len(existing.Models) > 0 {
for _, m := range existing.Models {
if m != modelFlag {
models = append(models, m)
}
}
}
} else {
var err error
models, err = selectModels(cmd.Context(), name, "")
if errors.Is(err, errCancelled) {
return nil
}
if err != nil {
return err
}
}
if editor, isEditor := r.(Editor); isEditor {
paths := editor.Paths()
if len(paths) > 0 {
fmt.Fprintf(os.Stderr, "This will modify your %s configuration:\n", r)
for _, p := range paths {
fmt.Fprintf(os.Stderr, " %s\n", p)
}
fmt.Fprintf(os.Stderr, "Backups will be saved to %s/\n\n", backupDir())
if ok, _ := confirmPrompt("Proceed?"); !ok {
return nil
}
}
}
if err := saveIntegration(name, models); err != nil {
return fmt.Errorf("failed to save: %w", err)
}
if editor, isEditor := r.(Editor); isEditor {
if err := editor.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
}
if _, isEditor := r.(Editor); isEditor {
if len(models) == 1 {
fmt.Fprintf(os.Stderr, "Added %s to %s\n", models[0], r)
} else {
fmt.Fprintf(os.Stderr, "Added %d models to %s (default: %s)\n", len(models), r, models[0])
}
}
if configFlag {
if launch, _ := confirmPrompt(fmt.Sprintf("\nLaunch %s now?", r)); launch {
return runIntegration(name, models[0])
}
fmt.Fprintf(os.Stderr, "Run 'ollama launch %s' to start with %s\n", strings.ToLower(name), models[0])
return nil
}
return runIntegration(name, models[0])
},
}
cmd.Flags().StringVar(&modelFlag, "model", "", "Model to use")
cmd.Flags().BoolVar(&configFlag, "config", false, "Configure without launching")
return cmd
}

View File

@@ -0,0 +1,188 @@
package config
import (
"slices"
"strings"
"testing"
"github.com/spf13/cobra"
)
func TestIntegrationLookup(t *testing.T) {
tests := []struct {
name string
input string
wantFound bool
wantName string
}{
{"claude lowercase", "claude", true, "Claude Code"},
{"claude uppercase", "CLAUDE", true, "Claude Code"},
{"claude mixed case", "Claude", true, "Claude Code"},
{"codex", "codex", true, "Codex"},
{"droid", "droid", true, "Droid"},
{"opencode", "opencode", true, "OpenCode"},
{"unknown integration", "unknown", false, ""},
{"empty string", "", false, ""},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
r, found := integrations[strings.ToLower(tt.input)]
if found != tt.wantFound {
t.Errorf("integrations[%q] found = %v, want %v", tt.input, found, tt.wantFound)
}
if found && r.String() != tt.wantName {
t.Errorf("integrations[%q].String() = %q, want %q", tt.input, r.String(), tt.wantName)
}
})
}
}
func TestIntegrationRegistry(t *testing.T) {
expectedIntegrations := []string{"claude", "codex", "droid", "opencode"}
for _, name := range expectedIntegrations {
t.Run(name, func(t *testing.T) {
r, ok := integrations[name]
if !ok {
t.Fatalf("integration %q not found in registry", name)
}
if r.String() == "" {
t.Error("integration.String() should not be empty")
}
})
}
}
func TestHasLocalModel(t *testing.T) {
tests := []struct {
name string
models []string
want bool
}{
{"empty list", []string{}, false},
{"single local model", []string{"llama3.2"}, true},
{"single cloud model", []string{"cloud-model"}, false},
{"mixed models", []string{"cloud-model", "llama3.2"}, true},
{"multiple local models", []string{"llama3.2", "qwen2.5"}, true},
{"multiple cloud models", []string{"cloud-a", "cloud-b"}, false},
{"local model first", []string{"llama3.2", "cloud-model"}, true},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v", tt.models, got, tt.want)
}
})
}
}
func TestLaunchCmd(t *testing.T) {
// Mock checkServerHeartbeat that always succeeds
mockCheck := func(cmd *cobra.Command, args []string) error {
return nil
}
cmd := LaunchCmd(mockCheck)
t.Run("command structure", func(t *testing.T) {
if cmd.Use != "launch [INTEGRATION]" {
t.Errorf("Use = %q, want %q", cmd.Use, "launch [INTEGRATION]")
}
if cmd.Short == "" {
t.Error("Short description should not be empty")
}
if cmd.Long == "" {
t.Error("Long description should not be empty")
}
})
t.Run("flags exist", func(t *testing.T) {
modelFlag := cmd.Flags().Lookup("model")
if modelFlag == nil {
t.Error("--model flag should exist")
}
configFlag := cmd.Flags().Lookup("config")
if configFlag == nil {
t.Error("--config flag should exist")
}
})
t.Run("PreRunE is set", func(t *testing.T) {
if cmd.PreRunE == nil {
t.Error("PreRunE should be set to checkServerHeartbeat")
}
})
}
func TestRunIntegration_UnknownIntegration(t *testing.T) {
err := runIntegration("unknown-integration", "model")
if err == nil {
t.Error("expected error for unknown integration, got nil")
}
if !strings.Contains(err.Error(), "unknown integration") {
t.Errorf("error should mention 'unknown integration', got: %v", err)
}
}
func TestHasLocalModel_DocumentsHeuristic(t *testing.T) {
tests := []struct {
name string
models []string
want bool
reason string
}{
{"empty list", []string{}, false, "empty list has no local models"},
{"contains-cloud-substring", []string{"deepseek-r1:cloud"}, false, "model with 'cloud' substring is considered cloud"},
{"cloud-in-name", []string{"my-cloud-model"}, false, "'cloud' anywhere in name = cloud model"},
{"cloudless", []string{"cloudless-model"}, false, "'cloudless' still contains 'cloud'"},
{"local-model", []string{"llama3.2"}, true, "no 'cloud' = local"},
{"mixed", []string{"cloud-model", "llama3.2"}, true, "one local model = hasLocalModel true"},
{"all-cloud", []string{"cloud-a", "cloud-b"}, false, "all contain 'cloud'"},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := slices.ContainsFunc(tt.models, func(m string) bool {
return !strings.Contains(m, "cloud")
})
if got != tt.want {
t.Errorf("hasLocalModel(%v) = %v, want %v (%s)", tt.models, got, tt.want, tt.reason)
}
})
}
}
func TestLaunchCmd_NilHeartbeat(t *testing.T) {
// This should not panic - cmd creation should work even with nil
cmd := LaunchCmd(nil)
if cmd == nil {
t.Fatal("LaunchCmd returned nil")
}
// PreRunE should be nil when passed nil
if cmd.PreRunE != nil {
t.Log("Note: PreRunE is set even when nil is passed (acceptable)")
}
}
func TestAllIntegrations_HaveRequiredMethods(t *testing.T) {
for name, r := range integrations {
t.Run(name, func(t *testing.T) {
// Test String() doesn't panic and returns non-empty
displayName := r.String()
if displayName == "" {
t.Error("String() should not return empty")
}
// Test Run() exists (we can't call it without actually running the command)
// Just verify the method is available
var _ func(string) error = r.Run
})
}
}

224
cmd/config/opencode.go Normal file
View File

@@ -0,0 +1,224 @@
package config
import (
"encoding/json"
"fmt"
"maps"
"os"
"os/exec"
"path/filepath"
"slices"
"strings"
)
// OpenCode implements Runner and Editor for OpenCode integration
type OpenCode struct{}
func (o *OpenCode) String() string { return "OpenCode" }
func (o *OpenCode) Run(model string) error {
if _, err := exec.LookPath("opencode"); err != nil {
return fmt.Errorf("opencode is not installed, install from https://opencode.ai")
}
// Call Edit() to ensure config is up-to-date before launch
models := []string{model}
if config, err := loadIntegration("opencode"); err == nil && len(config.Models) > 0 {
models = config.Models
}
if err := o.Edit(models); err != nil {
return fmt.Errorf("setup failed: %w", err)
}
cmd := exec.Command("opencode")
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
return cmd.Run()
}
func (o *OpenCode) Paths() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
var paths []string
p := filepath.Join(home, ".config", "opencode", "opencode.json")
if _, err := os.Stat(p); err == nil {
paths = append(paths, p)
}
sp := filepath.Join(home, ".local", "state", "opencode", "model.json")
if _, err := os.Stat(sp); err == nil {
paths = append(paths, sp)
}
return paths
}
func (o *OpenCode) Edit(modelList []string) error {
if len(modelList) == 0 {
return nil
}
home, err := os.UserHomeDir()
if err != nil {
return err
}
configPath := filepath.Join(home, ".config", "opencode", "opencode.json")
if err := os.MkdirAll(filepath.Dir(configPath), 0o755); err != nil {
return err
}
config := make(map[string]any)
if data, err := os.ReadFile(configPath); err == nil {
_ = json.Unmarshal(data, &config) // Ignore parse errors; treat missing/corrupt files as empty
}
config["$schema"] = "https://opencode.ai/config.json"
provider, ok := config["provider"].(map[string]any)
if !ok {
provider = make(map[string]any)
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
ollama = map[string]any{
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama (local)",
"options": map[string]any{
"baseURL": "http://localhost:11434/v1",
},
}
}
models, ok := ollama["models"].(map[string]any)
if !ok {
models = make(map[string]any)
}
selectedSet := make(map[string]bool)
for _, m := range modelList {
selectedSet[m] = true
}
for name, cfg := range models {
if cfgMap, ok := cfg.(map[string]any); ok {
if isOllamaModel(cfgMap) && !selectedSet[name] {
delete(models, name)
}
}
}
for _, model := range modelList {
if existing, ok := models[model].(map[string]any); ok {
// migrate existing models without _launch marker
if isOllamaModel(existing) {
existing["_launch"] = true
if name, ok := existing["name"].(string); ok {
existing["name"] = strings.TrimSuffix(name, " [Ollama]")
}
}
continue
}
models[model] = map[string]any{
"name": model,
"_launch": true,
}
}
ollama["models"] = models
provider["ollama"] = ollama
config["provider"] = provider
configData, err := json.MarshalIndent(config, "", " ")
if err != nil {
return err
}
if err := writeWithBackup(configPath, configData); err != nil {
return err
}
statePath := filepath.Join(home, ".local", "state", "opencode", "model.json")
if err := os.MkdirAll(filepath.Dir(statePath), 0o755); err != nil {
return err
}
state := map[string]any{
"recent": []any{},
"favorite": []any{},
"variant": map[string]any{},
}
if data, err := os.ReadFile(statePath); err == nil {
_ = json.Unmarshal(data, &state) // Ignore parse errors; use defaults
}
recent, _ := state["recent"].([]any)
modelSet := make(map[string]bool)
for _, m := range modelList {
modelSet[m] = true
}
// Filter out existing Ollama models we're about to re-add
newRecent := slices.DeleteFunc(slices.Clone(recent), func(entry any) bool {
e, ok := entry.(map[string]any)
if !ok || e["providerID"] != "ollama" {
return false
}
modelID, _ := e["modelID"].(string)
return modelSet[modelID]
})
// Prepend models in reverse order so first model ends up first
for _, model := range slices.Backward(modelList) {
newRecent = slices.Insert(newRecent, 0, any(map[string]any{
"providerID": "ollama",
"modelID": model,
}))
}
const maxRecentModels = 10
newRecent = newRecent[:min(len(newRecent), maxRecentModels)]
state["recent"] = newRecent
stateData, err := json.MarshalIndent(state, "", " ")
if err != nil {
return err
}
return writeWithBackup(statePath, stateData)
}
func (o *OpenCode) Models() []string {
home, err := os.UserHomeDir()
if err != nil {
return nil
}
config, err := readJSONFile(filepath.Join(home, ".config", "opencode", "opencode.json"))
if err != nil {
return nil
}
provider, _ := config["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if len(models) == 0 {
return nil
}
keys := slices.Collect(maps.Keys(models))
slices.Sort(keys)
return keys
}
// isOllamaModel reports whether a model config entry is managed by us
func isOllamaModel(cfg map[string]any) bool {
if v, ok := cfg["_launch"].(bool); ok && v {
return true
}
// previously used [Ollama] as a suffix for the model managed by ollama launch
if name, ok := cfg["name"].(string); ok {
return strings.HasSuffix(name, "[Ollama]")
}
return false
}

507
cmd/config/opencode_test.go Normal file
View File

@@ -0,0 +1,507 @@
package config
import (
"encoding/json"
"os"
"path/filepath"
"testing"
)
func TestOpenCodeIntegration(t *testing.T) {
o := &OpenCode{}
t.Run("String", func(t *testing.T) {
if got := o.String(); got != "OpenCode" {
t.Errorf("String() = %q, want %q", got, "OpenCode")
}
})
t.Run("implements Runner", func(t *testing.T) {
var _ Runner = o
})
t.Run("implements Editor", func(t *testing.T) {
var _ Editor = o
})
}
func TestOpenCodeEdit(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
cleanup := func() {
os.RemoveAll(configDir)
os.RemoveAll(stateDir)
}
t.Run("fresh install", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("preserve other providers", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"anthropic":{"apiKey":"xxx"}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
if provider["anthropic"] == nil {
t.Error("anthropic provider was removed")
}
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve other models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"mistral":{"name":"Mistral"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeModelExists(t, configPath, "mistral")
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("update existing model", func(t *testing.T) {
cleanup()
o.Edit([]string{"llama3.2"})
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
})
t.Run("preserve top-level keys", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"theme":"dark","keybindings":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
if cfg["theme"] != "dark" {
t.Error("theme was removed")
}
if cfg["keybindings"] == nil {
t.Error("keybindings was removed")
}
})
t.Run("model state - insert at index 0", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
assertOpenCodeRecentModel(t, statePath, 1, "anthropic", "claude")
})
t.Run("model state - preserve favorites and variants", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[],"favorite":[{"providerID":"x","modelID":"y"}],"variant":{"a":"b"}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
if len(state["favorite"].([]any)) != 1 {
t.Error("favorite was modified")
}
if state["variant"].(map[string]any)["a"] != "b" {
t.Error("variant was modified")
}
})
t.Run("model state - deduplicate on re-add", func(t *testing.T) {
cleanup()
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent":[{"providerID":"ollama","modelID":"llama3.2"},{"providerID":"anthropic","modelID":"claude"}],"favorite":[],"variant":{}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
recent := state["recent"].([]any)
if len(recent) != 2 {
t.Errorf("expected 2 recent entries, got %d", len(recent))
}
assertOpenCodeRecentModel(t, statePath, 0, "ollama", "llama3.2")
})
t.Run("remove model", func(t *testing.T) {
cleanup()
// First add two models
o.Edit([]string{"llama3.2", "mistral"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "mistral")
// Then remove one by only selecting the other
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelNotExists(t, configPath, "mistral")
})
t.Run("preserve user customizations on managed models", func(t *testing.T) {
cleanup()
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
// Add custom fields to the model entry (simulating user edits)
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry := models["llama3.2"].(map[string]any)
entry["_myPref"] = "custom-value"
entry["_myNum"] = 42
configData, _ := json.MarshalIndent(cfg, "", " ")
os.WriteFile(configPath, configData, 0o644)
// Re-run Edit — should preserve custom fields
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ = os.ReadFile(configPath)
json.Unmarshal(data, &cfg)
provider = cfg["provider"].(map[string]any)
ollama = provider["ollama"].(map[string]any)
models = ollama["models"].(map[string]any)
entry = models["llama3.2"].(map[string]any)
if entry["_myPref"] != "custom-value" {
t.Errorf("_myPref was lost: got %v", entry["_myPref"])
}
if entry["_myNum"] != float64(42) {
t.Errorf("_myNum was lost: got %v", entry["_myNum"])
}
if v, ok := entry["_launch"].(bool); !ok || !v {
t.Errorf("_launch marker missing or false: got %v", entry["_launch"])
}
})
t.Run("migrate legacy [Ollama] suffix entries", func(t *testing.T) {
cleanup()
// Write a config with a legacy entry (has [Ollama] suffix but no _launch marker)
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"llama3.2":{"name":"llama3.2 [Ollama]"}}}}}`), 0o644)
if err := o.Edit([]string{"llama3.2"}); err != nil {
t.Fatal(err)
}
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider := cfg["provider"].(map[string]any)
ollama := provider["ollama"].(map[string]any)
models := ollama["models"].(map[string]any)
entry := models["llama3.2"].(map[string]any)
// _launch marker should be added
if v, ok := entry["_launch"].(bool); !ok || !v {
t.Errorf("_launch marker not added during migration: got %v", entry["_launch"])
}
// [Ollama] suffix should be stripped
if name, ok := entry["name"].(string); !ok || name != "llama3.2" {
t.Errorf("name suffix not stripped: got %q", entry["name"])
}
})
t.Run("remove model preserves non-ollama models", func(t *testing.T) {
cleanup()
os.MkdirAll(configDir, 0o755)
// Add a non-Ollama model manually
os.WriteFile(configPath, []byte(`{"provider":{"ollama":{"models":{"external":{"name":"External Model"}}}}}`), 0o644)
o.Edit([]string{"llama3.2"})
assertOpenCodeModelExists(t, configPath, "llama3.2")
assertOpenCodeModelExists(t, configPath, "external") // Should be preserved
})
}
func assertOpenCodeModelExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatal("provider not found")
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
t.Fatal("ollama provider not found")
}
models, ok := ollama["models"].(map[string]any)
if !ok {
t.Fatal("models not found")
}
if models[model] == nil {
t.Errorf("model %s not found", model)
}
}
func assertOpenCodeModelNotExists(t *testing.T, path, model string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatal(err)
}
provider, ok := cfg["provider"].(map[string]any)
if !ok {
return // No provider means no model
}
ollama, ok := provider["ollama"].(map[string]any)
if !ok {
return // No ollama means no model
}
models, ok := ollama["models"].(map[string]any)
if !ok {
return // No models means no model
}
if models[model] != nil {
t.Errorf("model %s should not exist but was found", model)
}
}
func assertOpenCodeRecentModel(t *testing.T, path string, index int, providerID, modelID string) {
t.Helper()
data, err := os.ReadFile(path)
if err != nil {
t.Fatal(err)
}
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Fatal(err)
}
recent, ok := state["recent"].([]any)
if !ok {
t.Fatal("recent not found")
}
if index >= len(recent) {
t.Fatalf("index %d out of range (len=%d)", index, len(recent))
}
entry, ok := recent[index].(map[string]any)
if !ok {
t.Fatal("entry is not a map")
}
if entry["providerID"] != providerID {
t.Errorf("expected providerID %s, got %s", providerID, entry["providerID"])
}
if entry["modelID"] != modelID {
t.Errorf("expected modelID %s, got %s", modelID, entry["modelID"])
}
}
// Edge case tests for opencode.go
func TestOpenCodeEdit_CorruptedConfigJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{corrupted json content`), 0o644)
// Should not panic - corrupted JSON should be treated as empty
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted config: %v", err)
}
// Verify valid JSON was created
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Errorf("resulting config is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_CorruptedStateJSON(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{corrupted state`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit failed with corrupted state: %v", err)
}
// Verify valid state was created
data, _ := os.ReadFile(statePath)
var state map[string]any
if err := json.Unmarshal(data, &state); err != nil {
t.Errorf("resulting state is not valid JSON: %v", err)
}
}
func TestOpenCodeEdit_WrongTypeProvider(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
os.WriteFile(configPath, []byte(`{"provider": "not a map"}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type provider failed: %v", err)
}
// Verify provider is now correct type
data, _ := os.ReadFile(configPath)
var cfg map[string]any
json.Unmarshal(data, &cfg)
provider, ok := cfg["provider"].(map[string]any)
if !ok {
t.Fatalf("provider should be map after setup, got %T", cfg["provider"])
}
if provider["ollama"] == nil {
t.Error("ollama provider should be created")
}
}
func TestOpenCodeEdit_WrongTypeRecent(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
stateDir := filepath.Join(tmpDir, ".local", "state", "opencode")
statePath := filepath.Join(stateDir, "model.json")
os.MkdirAll(stateDir, 0o755)
os.WriteFile(statePath, []byte(`{"recent": "not an array", "favorite": [], "variant": {}}`), 0o644)
err := o.Edit([]string{"llama3.2"})
if err != nil {
t.Fatalf("Edit with wrong type recent failed: %v", err)
}
// The function should handle this gracefully
data, _ := os.ReadFile(statePath)
var state map[string]any
json.Unmarshal(data, &state)
// recent should be properly set after setup
recent, ok := state["recent"].([]any)
if !ok {
t.Logf("Note: recent type after setup is %T (documenting behavior)", state["recent"])
} else if len(recent) == 0 {
t.Logf("Note: recent is empty (documenting behavior)")
}
}
func TestOpenCodeEdit_EmptyModels(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
os.MkdirAll(configDir, 0o755)
originalContent := `{"provider":{"ollama":{"models":{"existing":{}}}}}`
os.WriteFile(configPath, []byte(originalContent), 0o644)
// Empty models should be no-op
err := o.Edit([]string{})
if err != nil {
t.Fatalf("Edit with empty models failed: %v", err)
}
// Original content should be preserved (file not modified)
data, _ := os.ReadFile(configPath)
if string(data) != originalContent {
t.Errorf("empty models should not modify file, but content changed")
}
}
func TestOpenCodeEdit_SpecialCharsInModelName(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
// Model name with special characters (though unusual)
specialModel := `model-with-"quotes"`
err := o.Edit([]string{specialModel})
if err != nil {
t.Fatalf("Edit with special chars failed: %v", err)
}
// Verify it was stored correctly
configDir := filepath.Join(tmpDir, ".config", "opencode")
configPath := filepath.Join(configDir, "opencode.json")
data, _ := os.ReadFile(configPath)
var cfg map[string]any
if err := json.Unmarshal(data, &cfg); err != nil {
t.Fatalf("resulting config is invalid JSON: %v", err)
}
// Model should be accessible
provider, _ := cfg["provider"].(map[string]any)
ollama, _ := provider["ollama"].(map[string]any)
models, _ := ollama["models"].(map[string]any)
if models[specialModel] == nil {
t.Errorf("model with special chars not found in config")
}
}
func TestOpenCodeModels_NoConfig(t *testing.T) {
o := &OpenCode{}
tmpDir := t.TempDir()
setTestHome(t, tmpDir)
models := o.Models()
if len(models) > 0 {
t.Errorf("expected nil/empty for missing config, got %v", models)
}
}

499
cmd/config/selector.go Normal file
View File

@@ -0,0 +1,499 @@
package config
import (
"errors"
"fmt"
"io"
"os"
"strings"
"golang.org/x/term"
)
// ANSI escape sequences for terminal formatting.
const (
ansiHideCursor = "\033[?25l"
ansiShowCursor = "\033[?25h"
ansiBold = "\033[1m"
ansiReset = "\033[0m"
ansiGray = "\033[37m"
ansiClearDown = "\033[J"
)
const maxDisplayedItems = 10
var errCancelled = errors.New("cancelled")
type selectItem struct {
Name string
Description string
}
type inputEvent int
const (
eventNone inputEvent = iota
eventEnter
eventEscape
eventUp
eventDown
eventTab
eventBackspace
eventChar
)
type selectState struct {
items []selectItem
filter string
selected int
scrollOffset int
}
func newSelectState(items []selectItem) *selectState {
return &selectState{items: items}
}
func (s *selectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *selectState) handleInput(event inputEvent, char byte) (done bool, result string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if len(filtered) > 0 && s.selected < len(filtered) {
return true, filtered[s.selected].Name, nil
}
case eventEscape:
return true, "", errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.selected = 0
s.scrollOffset = 0
}
case eventUp:
if s.selected > 0 {
s.selected--
if s.selected < s.scrollOffset {
s.scrollOffset = s.selected
}
}
case eventDown:
if s.selected < len(filtered)-1 {
s.selected++
if s.selected >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.selected - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.selected = 0
s.scrollOffset = 0
}
return false, "", nil
}
type multiSelectState struct {
items []selectItem
itemIndex map[string]int
filter string
highlighted int
scrollOffset int
checked map[int]bool
checkOrder []int
focusOnButton bool
}
func newMultiSelectState(items []selectItem, preChecked []string) *multiSelectState {
s := &multiSelectState{
items: items,
itemIndex: make(map[string]int, len(items)),
checked: make(map[int]bool),
}
for i, item := range items {
s.itemIndex[item.Name] = i
}
for _, name := range preChecked {
if idx, ok := s.itemIndex[name]; ok {
s.checked[idx] = true
s.checkOrder = append(s.checkOrder, idx)
}
}
return s
}
func (s *multiSelectState) filtered() []selectItem {
return filterItems(s.items, s.filter)
}
func (s *multiSelectState) toggleItem() {
filtered := s.filtered()
if len(filtered) == 0 || s.highlighted >= len(filtered) {
return
}
item := filtered[s.highlighted]
origIdx := s.itemIndex[item.Name]
if s.checked[origIdx] {
delete(s.checked, origIdx)
for i, idx := range s.checkOrder {
if idx == origIdx {
s.checkOrder = append(s.checkOrder[:i], s.checkOrder[i+1:]...)
break
}
}
} else {
s.checked[origIdx] = true
s.checkOrder = append(s.checkOrder, origIdx)
}
}
func (s *multiSelectState) handleInput(event inputEvent, char byte) (done bool, result []string, err error) {
filtered := s.filtered()
switch event {
case eventEnter:
if s.focusOnButton && len(s.checkOrder) > 0 {
var res []string
for _, idx := range s.checkOrder {
res = append(res, s.items[idx].Name)
}
return true, res, nil
} else if !s.focusOnButton {
s.toggleItem()
}
case eventTab:
if len(s.checkOrder) > 0 {
s.focusOnButton = !s.focusOnButton
}
case eventEscape:
return true, nil, errCancelled
case eventBackspace:
if len(s.filter) > 0 {
s.filter = s.filter[:len(s.filter)-1]
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
case eventUp:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted > 0 {
s.highlighted--
if s.highlighted < s.scrollOffset {
s.scrollOffset = s.highlighted
}
}
case eventDown:
if s.focusOnButton {
s.focusOnButton = false
} else if s.highlighted < len(filtered)-1 {
s.highlighted++
if s.highlighted >= s.scrollOffset+maxDisplayedItems {
s.scrollOffset = s.highlighted - maxDisplayedItems + 1
}
}
case eventChar:
s.filter += string(char)
s.highlighted = 0
s.scrollOffset = 0
s.focusOnButton = false
}
return false, nil, nil
}
func (s *multiSelectState) selectedCount() int {
return len(s.checkOrder)
}
// Terminal I/O handling
type terminalState struct {
fd int
oldState *term.State
}
func enterRawMode() (*terminalState, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return nil, err
}
fmt.Fprint(os.Stderr, ansiHideCursor)
return &terminalState{fd: fd, oldState: oldState}, nil
}
func (t *terminalState) restore() {
fmt.Fprint(os.Stderr, ansiShowCursor)
term.Restore(t.fd, t.oldState)
}
func clearLines(n int) {
if n > 0 {
fmt.Fprintf(os.Stderr, "\033[%dA", n)
fmt.Fprint(os.Stderr, ansiClearDown)
}
}
func parseInput(r io.Reader) (inputEvent, byte, error) {
buf := make([]byte, 3)
n, err := r.Read(buf)
if err != nil {
return 0, 0, err
}
switch {
case n == 1 && buf[0] == 13:
return eventEnter, 0, nil
case n == 1 && (buf[0] == 3 || buf[0] == 27):
return eventEscape, 0, nil
case n == 1 && buf[0] == 9:
return eventTab, 0, nil
case n == 1 && buf[0] == 127:
return eventBackspace, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 65:
return eventUp, 0, nil
case n == 3 && buf[0] == 27 && buf[1] == 91 && buf[2] == 66:
return eventDown, 0, nil
case n == 1 && buf[0] >= 32 && buf[0] < 127:
return eventChar, buf[0], nil
}
return eventNone, 0, nil
}
// Rendering
func renderSelect(w io.Writer, prompt string, s *selectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
prefix := " "
if idx == s.selected {
prefix = " " + ansiBold + "> "
}
if item.Description != "" {
fmt.Fprintf(w, "%s%s%s %s- %s%s\r\n", prefix, item.Name, ansiReset, ansiGray, item.Description, ansiReset)
} else {
fmt.Fprintf(w, "%s%s%s\r\n", prefix, item.Name, ansiReset)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
return lineCount
}
func renderMultiSelect(w io.Writer, prompt string, s *multiSelectState) int {
filtered := s.filtered()
fmt.Fprintf(w, "%s %s\r\n", prompt, s.filter)
lineCount := 1
if len(filtered) == 0 {
fmt.Fprintf(w, " %s(no matches)%s\r\n", ansiGray, ansiReset)
lineCount++
} else {
displayCount := min(len(filtered), maxDisplayedItems)
for i := range displayCount {
idx := s.scrollOffset + i
if idx >= len(filtered) {
break
}
item := filtered[idx]
origIdx := s.itemIndex[item.Name]
checkbox := "[ ]"
if s.checked[origIdx] {
checkbox = "[x]"
}
prefix := " "
suffix := ""
if idx == s.highlighted && !s.focusOnButton {
prefix = "> "
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == origIdx {
suffix = " " + ansiGray + "(default)" + ansiReset
}
if idx == s.highlighted && !s.focusOnButton {
fmt.Fprintf(w, " %s%s %s %s%s%s\r\n", ansiBold, prefix, checkbox, item.Name, ansiReset, suffix)
} else {
fmt.Fprintf(w, " %s %s %s%s\r\n", prefix, checkbox, item.Name, suffix)
}
lineCount++
}
if remaining := len(filtered) - s.scrollOffset - displayCount; remaining > 0 {
fmt.Fprintf(w, " %s... and %d more%s\r\n", ansiGray, remaining, ansiReset)
lineCount++
}
}
fmt.Fprintf(w, "\r\n")
lineCount++
count := s.selectedCount()
switch {
case count == 0:
fmt.Fprintf(w, " %sSelect at least one model.%s\r\n", ansiGray, ansiReset)
case s.focusOnButton:
fmt.Fprintf(w, " %s> [ Continue ]%s %s(%d selected)%s\r\n", ansiBold, ansiReset, ansiGray, count, ansiReset)
default:
fmt.Fprintf(w, " %s[ Continue ] (%d selected) - press Tab%s\r\n", ansiGray, count, ansiReset)
}
lineCount++
return lineCount
}
// selectPrompt prompts the user to select a single item from a list.
func selectPrompt(prompt string, items []selectItem) (string, error) {
if len(items) == 0 {
return "", fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return "", err
}
defer ts.restore()
state := newSelectState(items)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return "", err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return "", err
}
return result, nil
}
render()
}
}
// multiSelectPrompt prompts the user to select multiple items from a list.
func multiSelectPrompt(prompt string, items []selectItem, preChecked []string) ([]string, error) {
if len(items) == 0 {
return nil, fmt.Errorf("no items to select from")
}
ts, err := enterRawMode()
if err != nil {
return nil, err
}
defer ts.restore()
state := newMultiSelectState(items, preChecked)
var lastLineCount int
render := func() {
clearLines(lastLineCount)
lastLineCount = renderMultiSelect(os.Stderr, prompt, state)
}
render()
for {
event, char, err := parseInput(os.Stdin)
if err != nil {
return nil, err
}
done, result, err := state.handleInput(event, char)
if done {
clearLines(lastLineCount)
if err != nil {
return nil, err
}
return result, nil
}
render()
}
}
func confirmPrompt(prompt string) (bool, error) {
fd := int(os.Stdin.Fd())
oldState, err := term.MakeRaw(fd)
if err != nil {
return false, err
}
defer term.Restore(fd, oldState)
fmt.Fprintf(os.Stderr, "%s (\033[1my\033[0m/n) ", prompt)
buf := make([]byte, 1)
for {
if _, err := os.Stdin.Read(buf); err != nil {
return false, err
}
switch buf[0] {
case 'Y', 'y', 13:
fmt.Fprintf(os.Stderr, "yes\r\n")
return true, nil
case 'N', 'n', 27, 3:
fmt.Fprintf(os.Stderr, "no\r\n")
return false, nil
}
}
}
func filterItems(items []selectItem, filter string) []selectItem {
if filter == "" {
return items
}
var result []selectItem
filterLower := strings.ToLower(filter)
for _, item := range items {
if strings.Contains(strings.ToLower(item.Name), filterLower) {
result = append(result, item)
}
}
return result
}

913
cmd/config/selector_test.go Normal file
View File

@@ -0,0 +1,913 @@
package config
import (
"bytes"
"strings"
"testing"
)
func TestFilterItems(t *testing.T) {
items := []selectItem{
{Name: "llama3.2:latest"},
{Name: "qwen2.5:7b"},
{Name: "deepseek-v3:cloud"},
{Name: "GPT-OSS:20b"},
}
t.Run("EmptyFilter_ReturnsAllItems", func(t *testing.T) {
result := filterItems(items, "")
if len(result) != len(items) {
t.Errorf("expected %d items, got %d", len(items), len(result))
}
})
t.Run("CaseInsensitive_UppercaseFilterMatchesLowercase", func(t *testing.T) {
result := filterItems(items, "LLAMA")
if len(result) != 1 || result[0].Name != "llama3.2:latest" {
t.Errorf("expected llama3.2:latest, got %v", result)
}
})
t.Run("CaseInsensitive_LowercaseFilterMatchesUppercase", func(t *testing.T) {
result := filterItems(items, "gpt")
if len(result) != 1 || result[0].Name != "GPT-OSS:20b" {
t.Errorf("expected GPT-OSS:20b, got %v", result)
}
})
t.Run("PartialMatch", func(t *testing.T) {
result := filterItems(items, "deep")
if len(result) != 1 || result[0].Name != "deepseek-v3:cloud" {
t.Errorf("expected deepseek-v3:cloud, got %v", result)
}
})
t.Run("NoMatch_ReturnsEmpty", func(t *testing.T) {
result := filterItems(items, "nonexistent")
if len(result) != 0 {
t.Errorf("expected 0 items, got %d", len(result))
}
})
}
func TestSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState", func(t *testing.T) {
s := newSelectState(items)
if s.selected != 0 {
t.Errorf("expected selected=0, got %d", s.selected)
}
if s.filter != "" {
t.Errorf("expected empty filter, got %q", s.filter)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Enter_SelectsCurrentItem", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item1" || err != nil {
t.Errorf("expected (true, item1, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_WithFilter_SelectsFilteredItem", func(t *testing.T) {
s := newSelectState(items)
s.filter = "item3"
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "item3" || err != nil {
t.Errorf("expected (true, item3, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Enter_EmptyFilteredList_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.filter = "nonexistent"
done, result, err := s.handleInput(eventEnter, 0)
if done || result != "" || err != nil {
t.Errorf("expected (false, '', nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newSelectState(items)
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != "" || err != errCancelled {
t.Errorf("expected (true, '', errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Down_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventDown, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Down_AtBottom_StaysAtBottom", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventDown, 0)
if s.selected != 2 {
t.Errorf("expected selected=2 (stayed at bottom), got %d", s.selected)
}
})
t.Run("Up_MovesSelection", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventUp, 0)
if s.selected != 1 {
t.Errorf("expected selected=1, got %d", s.selected)
}
})
t.Run("Up_AtTop_StaysAtTop", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 (stayed at top), got %d", s.selected)
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventChar, 'i')
s.handleInput(eventChar, 't')
s.handleInput(eventChar, 'e')
s.handleInput(eventChar, 'm')
s.handleInput(eventChar, '2')
if s.filter != "item2" {
t.Errorf("expected filter='item2', got %q", s.filter)
}
filtered := s.filtered()
if len(filtered) != 1 || filtered[0].Name != "item2" {
t.Errorf("expected [item2], got %v", filtered)
}
})
t.Run("Char_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.selected = 2
s.handleInput(eventChar, 'x')
if s.selected != 0 {
t.Errorf("expected selected=0 after typing, got %d", s.selected)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_EmptyFilter_DoesNothing", func(t *testing.T) {
s := newSelectState(items)
s.handleInput(eventBackspace, 0)
if s.filter != "" {
t.Errorf("expected filter='', got %q", s.filter)
}
})
t.Run("Backspace_ResetsSelectionToZero", func(t *testing.T) {
s := newSelectState(items)
s.filter = "test"
s.selected = 2
s.handleInput(eventBackspace, 0)
if s.selected != 0 {
t.Errorf("expected selected=0 after backspace, got %d", s.selected)
}
})
t.Run("Scroll_DownPastVisibleItems_ScrollsViewport", func(t *testing.T) {
// maxDisplayedItems is 10, so with 15 items we need to scroll
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
// move down 12 times (past the 10-item viewport)
for range 12 {
s.handleInput(eventDown, 0)
}
if s.selected != 12 {
t.Errorf("expected selected=12, got %d", s.selected)
}
if s.scrollOffset != 3 {
t.Errorf("expected scrollOffset=3 (12-10+1), got %d", s.scrollOffset)
}
})
t.Run("Scroll_UpPastScrollOffset_ScrollsViewport", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
s.selected = 5
s.scrollOffset = 5
s.handleInput(eventUp, 0)
if s.selected != 4 {
t.Errorf("expected selected=4, got %d", s.selected)
}
if s.scrollOffset != 4 {
t.Errorf("expected scrollOffset=4, got %d", s.scrollOffset)
}
})
}
func TestMultiSelectState(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
{Name: "item3"},
}
t.Run("InitialState_NoPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected, got %d", s.selectedCount())
}
if s.focusOnButton {
t.Error("expected focusOnButton=false initially")
}
})
t.Run("InitialState_WithPrechecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item3"})
if s.selectedCount() != 2 {
t.Errorf("expected 2 selected, got %d", s.selectedCount())
}
if !s.checked[1] || !s.checked[2] {
t.Error("expected item2 and item3 to be checked")
}
})
t.Run("Prechecked_PreservesSelectionOrder", func(t *testing.T) {
// order matters: first checked = default model
s := newMultiSelectState(items, []string{"item3", "item1"})
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
if s.checkOrder[0] != 2 || s.checkOrder[1] != 0 {
t.Errorf("expected checkOrder=[2,0] (item3 first), got %v", s.checkOrder)
}
})
t.Run("Prechecked_IgnoresInvalidNames", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "nonexistent"})
if s.selectedCount() != 1 {
t.Errorf("expected 1 selected (nonexistent ignored), got %d", s.selectedCount())
}
})
t.Run("Toggle_ChecksUncheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.toggleItem()
if !s.checked[0] {
t.Error("expected item1 to be checked after toggle")
}
})
t.Run("Toggle_UnchecksCheckedItem", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.toggleItem()
if s.checked[0] {
t.Error("expected item1 to be unchecked after toggle")
}
})
t.Run("Toggle_RemovesFromCheckOrder", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2", "item3"})
s.highlighted = 1 // toggle item2
s.toggleItem()
if len(s.checkOrder) != 2 {
t.Fatalf("expected 2 in checkOrder, got %d", len(s.checkOrder))
}
// should be [0, 2] (item1, item3) with item2 removed
if s.checkOrder[0] != 0 || s.checkOrder[1] != 2 {
t.Errorf("expected checkOrder=[0,2], got %v", s.checkOrder)
}
})
t.Run("Enter_TogglesWhenNotOnButton", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventEnter, 0)
if !s.checked[0] {
t.Error("expected item1 to be checked after enter")
}
})
t.Run("Enter_OnButton_ReturnsSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if !done || err != nil {
t.Errorf("expected done=true, err=nil, got done=%v, err=%v", done, err)
}
// result should preserve selection order
if len(result) != 2 || result[0] != "item2" || result[1] != "item1" {
t.Errorf("expected [item2, item1], got %v", result)
}
})
t.Run("Enter_OnButton_EmptySelection_DoesNothing", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.focusOnButton = true
done, result, err := s.handleInput(eventEnter, 0)
if done || result != nil || err != nil {
t.Errorf("expected (false, nil, nil), got (%v, %v, %v)", done, result, err)
}
})
t.Run("Tab_SwitchesToButton_WhenHasSelection", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after tab")
}
})
t.Run("Tab_DoesNothing_WhenNoSelection", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("tab should not focus button when nothing selected")
}
})
t.Run("Tab_TogglesButtonFocus", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.handleInput(eventTab, 0)
if !s.focusOnButton {
t.Error("expected focus on button after first tab")
}
s.handleInput(eventTab, 0)
if s.focusOnButton {
t.Error("expected focus back on list after second tab")
}
})
t.Run("Escape_ReturnsCancelledError", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
done, result, err := s.handleInput(eventEscape, 0)
if !done || result != nil || err != errCancelled {
t.Errorf("expected (true, nil, errCancelled), got (%v, %v, %v)", done, result, err)
}
})
t.Run("IsDefault_TrueForFirstChecked", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item2", "item1"})
if !(len(s.checkOrder) > 0 && s.checkOrder[0] == 1) {
t.Error("expected item2 (idx 1) to be default (first checked)")
}
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected item1 (idx 0) to NOT be default")
}
})
t.Run("IsDefault_FalseWhenNothingChecked", func(t *testing.T) {
s := newMultiSelectState(items, nil)
if len(s.checkOrder) > 0 && s.checkOrder[0] == 0 {
t.Error("expected isDefault=false when nothing checked")
}
})
t.Run("Down_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventDown, 0)
if s.highlighted != 1 {
t.Errorf("expected highlighted=1, got %d", s.highlighted)
}
})
t.Run("Up_MovesHighlight", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.highlighted = 1
s.handleInput(eventUp, 0)
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
})
t.Run("Arrow_ReturnsFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.focusOnButton = true
s.handleInput(eventDown, 0)
if s.focusOnButton {
t.Error("expected focus to return to list on arrow key")
}
})
t.Run("Char_AppendsToFilter", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.handleInput(eventChar, 'x')
if s.filter != "x" {
t.Errorf("expected filter='x', got %q", s.filter)
}
})
t.Run("Char_ResetsHighlightAndScroll", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newMultiSelectState(manyItems, nil)
s.highlighted = 10
s.scrollOffset = 5
s.handleInput(eventChar, 'x')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0, got %d", s.highlighted)
}
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0, got %d", s.scrollOffset)
}
})
t.Run("Backspace_RemovesLastFilterChar", func(t *testing.T) {
s := newMultiSelectState(items, nil)
s.filter = "test"
s.handleInput(eventBackspace, 0)
if s.filter != "tes" {
t.Errorf("expected filter='tes', got %q", s.filter)
}
})
t.Run("Backspace_RemovesFocusFromButton", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
s.filter = "x"
s.focusOnButton = true
s.handleInput(eventBackspace, 0)
if s.focusOnButton {
t.Error("expected focusOnButton=false after backspace")
}
})
}
func TestParseInput(t *testing.T) {
t.Run("Enter", func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{13}))
if err != nil || event != eventEnter || char != 0 {
t.Errorf("expected (eventEnter, 0, nil), got (%v, %v, %v)", event, char, err)
}
})
t.Run("Escape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape, got %v", event)
}
})
t.Run("CtrlC_TreatedAsEscape", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{3}))
if err != nil || event != eventEscape {
t.Errorf("expected eventEscape for Ctrl+C, got %v", event)
}
})
t.Run("Tab", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{9}))
if err != nil || event != eventTab {
t.Errorf("expected eventTab, got %v", event)
}
})
t.Run("Backspace", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{127}))
if err != nil || event != eventBackspace {
t.Errorf("expected eventBackspace, got %v", event)
}
})
t.Run("UpArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 65}))
if err != nil || event != eventUp {
t.Errorf("expected eventUp, got %v", event)
}
})
t.Run("DownArrow", func(t *testing.T) {
event, _, err := parseInput(bytes.NewReader([]byte{27, 91, 66}))
if err != nil || event != eventDown {
t.Errorf("expected eventDown, got %v", event)
}
})
t.Run("PrintableChars", func(t *testing.T) {
tests := []struct {
name string
char byte
}{
{"lowercase", 'a'},
{"uppercase", 'Z'},
{"digit", '5'},
{"space", ' '},
{"tilde", '~'},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
event, char, err := parseInput(bytes.NewReader([]byte{tt.char}))
if err != nil || event != eventChar || char != tt.char {
t.Errorf("expected (eventChar, %q), got (%v, %q)", tt.char, event, char)
}
})
}
})
}
func TestRenderSelect(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "first item"},
{Name: "item2"},
}
t.Run("ShowsPromptAndItems", func(t *testing.T) {
s := newSelectState(items)
var buf bytes.Buffer
lineCount := renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "Select:") {
t.Error("expected prompt in output")
}
if !strings.Contains(output, "item1") {
t.Error("expected item1 in output")
}
if !strings.Contains(output, "first item") {
t.Error("expected description in output")
}
if !strings.Contains(output, "item2") {
t.Error("expected item2 in output")
}
if lineCount != 3 { // 1 prompt + 2 items
t.Errorf("expected 3 lines, got %d", lineCount)
}
})
t.Run("EmptyFilteredList_ShowsNoMatches", func(t *testing.T) {
s := newSelectState(items)
s.filter = "xyz"
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' message")
}
})
t.Run("LongList_ShowsRemainingCount", func(t *testing.T) {
manyItems := make([]selectItem, 15)
for i := range manyItems {
manyItems[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(manyItems)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
// 15 items - 10 displayed = 5 more
if !strings.Contains(buf.String(), "5 more") {
t.Error("expected '5 more' indicator")
}
})
}
func TestRenderMultiSelect(t *testing.T) {
items := []selectItem{
{Name: "item1"},
{Name: "item2"},
}
t.Run("ShowsCheckboxes", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "[x]") {
t.Error("expected checked checkbox [x]")
}
if !strings.Contains(output, "[ ]") {
t.Error("expected unchecked checkbox [ ]")
}
})
t.Run("ShowsDefaultMarker", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "(default)") {
t.Error("expected (default) marker for first checked item")
}
})
t.Run("ShowsSelectedCount", func(t *testing.T) {
s := newMultiSelectState(items, []string{"item1", "item2"})
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "2 selected") {
t.Error("expected '2 selected' in output")
}
})
t.Run("NoSelection_ShowsHelperText", func(t *testing.T) {
s := newMultiSelectState(items, nil)
var buf bytes.Buffer
renderMultiSelect(&buf, "Select:", s)
if !strings.Contains(buf.String(), "Select at least one") {
t.Error("expected 'Select at least one' helper text")
}
})
}
func TestErrCancelled(t *testing.T) {
t.Run("NotNil", func(t *testing.T) {
if errCancelled == nil {
t.Error("errCancelled should not be nil")
}
})
t.Run("Message", func(t *testing.T) {
if errCancelled.Error() != "cancelled" {
t.Errorf("expected 'cancelled', got %q", errCancelled.Error())
}
})
}
// Edge case tests for selector.go
// TestSelectState_SingleItem verifies that single item list works without crash.
// List with only one item should still work.
func TestSelectState_SingleItem(t *testing.T) {
items := []selectItem{{Name: "only-one"}}
s := newSelectState(items)
// Down should do nothing (already at bottom)
s.handleInput(eventDown, 0)
if s.selected != 0 {
t.Errorf("down on single item: expected selected=0, got %d", s.selected)
}
// Up should do nothing (already at top)
s.handleInput(eventUp, 0)
if s.selected != 0 {
t.Errorf("up on single item: expected selected=0, got %d", s.selected)
}
// Enter should select the only item
done, result, err := s.handleInput(eventEnter, 0)
if !done || result != "only-one" || err != nil {
t.Errorf("enter on single item: expected (true, 'only-one', nil), got (%v, %q, %v)", done, result, err)
}
}
// TestSelectState_ExactlyMaxItems verifies boundary condition at maxDisplayedItems.
// List with exactly maxDisplayedItems items should not scroll.
func TestSelectState_ExactlyMaxItems(t *testing.T) {
items := make([]selectItem, maxDisplayedItems)
for i := range items {
items[i] = selectItem{Name: string(rune('a' + i))}
}
s := newSelectState(items)
// Move to last item
for range maxDisplayedItems - 1 {
s.handleInput(eventDown, 0)
}
if s.selected != maxDisplayedItems-1 {
t.Errorf("expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
// Should not scroll when exactly at max
if s.scrollOffset != 0 {
t.Errorf("expected scrollOffset=0 for exactly maxDisplayedItems, got %d", s.scrollOffset)
}
// One more down should do nothing
s.handleInput(eventDown, 0)
if s.selected != maxDisplayedItems-1 {
t.Errorf("down at max: expected selected=%d, got %d", maxDisplayedItems-1, s.selected)
}
}
// TestFilterItems_RegexSpecialChars verifies that filter is literal, not regex.
// User typing "model.v1" shouldn't match "modelsv1".
func TestFilterItems_RegexSpecialChars(t *testing.T) {
items := []selectItem{
{Name: "model.v1"},
{Name: "modelsv1"},
{Name: "model-v1"},
}
// Filter with dot should only match literal dot
result := filterItems(items, "model.v1")
if len(result) != 1 {
t.Errorf("expected 1 exact match, got %d", len(result))
}
if len(result) > 0 && result[0].Name != "model.v1" {
t.Errorf("expected 'model.v1', got %s", result[0].Name)
}
// Other regex special chars should be literal too
items2 := []selectItem{
{Name: "test[0]"},
{Name: "test0"},
{Name: "test(1)"},
}
result2 := filterItems(items2, "test[0]")
if len(result2) != 1 || result2[0].Name != "test[0]" {
t.Errorf("expected only 'test[0]', got %v", result2)
}
}
// TestMultiSelectState_DuplicateNames documents handling of duplicate item names.
// itemIndex uses name as key - duplicates cause collision. This documents
// the current behavior: the last index for a duplicate name is stored
func TestMultiSelectState_DuplicateNames(t *testing.T) {
// Duplicate names - this is an edge case that shouldn't happen in practice
items := []selectItem{
{Name: "duplicate"},
{Name: "duplicate"},
{Name: "unique"},
}
s := newMultiSelectState(items, nil)
// DOCUMENTED BEHAVIOR: itemIndex maps name to LAST index
// When there are duplicates, only the last occurrence's index is stored
if s.itemIndex["duplicate"] != 1 {
t.Errorf("itemIndex should map 'duplicate' to last index (1), got %d", s.itemIndex["duplicate"])
}
// Toggle item at highlighted=0 (first "duplicate")
// Due to name collision, toggleItem uses itemIndex["duplicate"] = 1
// So it actually toggles the SECOND duplicate item, not the first
s.toggleItem()
// This documents the potentially surprising behavior:
// We toggled at highlighted=0, but itemIndex lookup returned 1
if !s.checked[1] {
t.Error("toggle should check index 1 (due to name collision in itemIndex)")
}
if s.checked[0] {
t.Log("Note: index 0 is NOT checked, even though highlighted=0 (name collision behavior)")
}
}
// TestSelectState_FilterReducesBelowSelection verifies selection resets when filter reduces list.
// Prevents index-out-of-bounds on next keystroke
func TestSelectState_FilterReducesBelowSelection(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newSelectState(items)
s.selected = 2 // Select "cherry"
// Type a filter that removes cherry from results
s.handleInput(eventChar, 'a') // Filter to "a" - matches "apple" and "banana"
// Selection should reset to 0
if s.selected != 0 {
t.Errorf("expected selected=0 after filter, got %d", s.selected)
}
filtered := s.filtered()
if len(filtered) != 2 {
t.Errorf("expected 2 filtered items, got %d", len(filtered))
}
}
// TestFilterItems_UnicodeCharacters verifies filtering works with UTF-8.
// Model names might contain unicode characters
func TestFilterItems_UnicodeCharacters(t *testing.T) {
items := []selectItem{
{Name: "llama-日本語"},
{Name: "模型-chinese"},
{Name: "émoji-🦙"},
{Name: "regular-model"},
}
t.Run("filter japanese", func(t *testing.T) {
result := filterItems(items, "日本")
if len(result) != 1 || result[0].Name != "llama-日本語" {
t.Errorf("expected llama-日本語, got %v", result)
}
})
t.Run("filter chinese", func(t *testing.T) {
result := filterItems(items, "模型")
if len(result) != 1 || result[0].Name != "模型-chinese" {
t.Errorf("expected 模型-chinese, got %v", result)
}
})
t.Run("filter emoji", func(t *testing.T) {
result := filterItems(items, "🦙")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
t.Run("filter accented char", func(t *testing.T) {
result := filterItems(items, "émoji")
if len(result) != 1 || result[0].Name != "émoji-🦙" {
t.Errorf("expected émoji-🦙, got %v", result)
}
})
}
// TestMultiSelectState_FilterReducesBelowHighlight verifies highlight resets when filter reduces list.
func TestMultiSelectState_FilterReducesBelowHighlight(t *testing.T) {
items := []selectItem{
{Name: "apple"},
{Name: "banana"},
{Name: "cherry"},
}
s := newMultiSelectState(items, nil)
s.highlighted = 2 // Highlight "cherry"
// Type a filter that removes cherry
s.handleInput(eventChar, 'a')
if s.highlighted != 0 {
t.Errorf("expected highlighted=0 after filter, got %d", s.highlighted)
}
}
// TestMultiSelectState_EmptyItems verifies handling of empty item list.
// Empty list should be handled gracefully.
func TestMultiSelectState_EmptyItems(t *testing.T) {
s := newMultiSelectState([]selectItem{}, nil)
// Toggle should not panic on empty list
s.toggleItem()
if s.selectedCount() != 0 {
t.Errorf("expected 0 selected for empty list, got %d", s.selectedCount())
}
// Render should handle empty list
var buf bytes.Buffer
lineCount := renderMultiSelect(&buf, "Select:", s)
if lineCount == 0 {
t.Error("renderMultiSelect should produce output even for empty list")
}
if !strings.Contains(buf.String(), "no matches") {
t.Error("expected 'no matches' for empty list")
}
}
// TestSelectState_RenderWithDescriptions verifies rendering items with descriptions.
func TestSelectState_RenderWithDescriptions(t *testing.T) {
items := []selectItem{
{Name: "item1", Description: "First item description"},
{Name: "item2", Description: ""},
{Name: "item3", Description: "Third item"},
}
s := newSelectState(items)
var buf bytes.Buffer
renderSelect(&buf, "Select:", s)
output := buf.String()
if !strings.Contains(output, "First item description") {
t.Error("expected description to be rendered")
}
if !strings.Contains(output, "item2") {
t.Error("expected item without description to be rendered")
}
}

View File

@@ -159,6 +159,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
sb.WriteString(before)
if !ok {
fmt.Fprintln(&sb)
scanner.Prompt.UseAlt = true
continue
}

View File

@@ -6,6 +6,10 @@ import (
"log/slog"
"regexp"
"strconv"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
@@ -69,6 +73,9 @@ func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
kv["glm4moelite.attention.key_length_mla"] = p.KVLoraRank + p.QKRopeHeadDim
kv["glm4moelite.attention.value_length_mla"] = p.KVLoraRank
kv["tokenizer.ggml.pre"] = "glm4"
return kv
@@ -100,6 +107,67 @@ func (p *glm4MoeLiteModel) Replacements() []string {
}
}
// repackKVB extracts K or V from the combined KV_B tensor for MLA absorption.
// K output row-major: [n_head, kv_lora_rank, qk_nope] -> GGML ne[]={qk_nope, kv_lora_rank, n_head}
// V output row-major: [n_head, v_head, kv_lora_rank] -> GGML ne[]={kv_lora_rank, v_head, n_head}
func (p *glm4MoeLiteModel) repackKVB(extractK bool, kvFirst bool, numHeads int) Repacker {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var err error
// Normalize to [n_head * (qk_nope + v_head), kv_lora_rank] layout
if kvFirst {
tt, err = tensor.Transpose(tt, 1, 0)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
// Reshape to [n_head, qk_nope + v_head, kv_lora_rank]
if err := tt.Reshape(numHeads, kvPerHead, kvLoraRank); err != nil {
return nil, err
}
if extractK {
// Slice K: [n_head, qk_nope, kv_lora_rank]
tt, err = tt.Slice(nil, tensor.S(0, qkNope), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
// Transpose to [n_head, kv_lora_rank, qk_nope]
tt, err = tensor.Transpose(tt, 0, 2, 1)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
} else {
// Slice V: [n_head, v_head, kv_lora_rank] - already correct layout
tt, err = tt.Slice(nil, tensor.S(qkNope, kvPerHead), nil)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
}
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
}
}
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
@@ -139,6 +207,52 @@ func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
// Split attn_kv_b into separate attn_k_b and attn_v_b for MLA absorption
if strings.HasSuffix(t.Name(), ".attn_kv_b.weight") {
qkNope := int(p.QKNopeHeadDim)
vHeadDim := int(p.VHeadDim)
kvLoraRank := int(p.KVLoraRank)
kvPerHead := qkNope + vHeadDim
numHeads := int(p.NumAttentionHeads)
kvFirst := true
if len(t.Shape()) == 2 {
switch {
case int(t.Shape()[0]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[1])%kvPerHead == 0 {
numHeads = int(t.Shape()[1]) / kvPerHead
}
kvFirst = true
case int(t.Shape()[1]) == kvLoraRank:
if kvPerHead > 0 && int(t.Shape()[0])%kvPerHead == 0 {
numHeads = int(t.Shape()[0]) / kvPerHead
}
kvFirst = false
default:
slog.Warn("glm4moelite: unexpected attn_kv_b layout", "name", t.Name(), "shape", t.Shape())
}
}
kTensor := t.Clone()
kTensor.SetRepacker(p.repackKVB(true, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_k_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(kvLoraRank), uint64(qkNope)},
WriterTo: kTensor,
})
vTensor := t.Clone()
vTensor.SetRepacker(p.repackKVB(false, kvFirst, numHeads))
out = append(out, &ggml.Tensor{
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_v_b", 1),
Kind: t.Kind(),
Shape: []uint64{uint64(numHeads), uint64(vHeadDim), uint64(kvLoraRank)},
WriterTo: vTensor,
})
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),

View File

@@ -4,16 +4,6 @@ title: Anthropic compatibility
Ollama provides compatibility with the [Anthropic Messages API](https://docs.anthropic.com/en/api/messages) to help connect existing applications to Ollama, including tools like Claude Code.
## Recommended models
For coding use cases, models like `glm-4.7:cloud`, `minimax-m2.1:cloud`, and `qwen3-coder` are recommended.
Pull a model before use:
```shell
ollama pull qwen3-coder
ollama pull glm-4.7:cloud
```
## Usage
### Environment variables
@@ -22,8 +12,8 @@ To use Ollama with tools that expect the Anthropic API (like Claude Code), set t
```shell
export ANTHROPIC_AUTH_TOKEN=ollama # required but ignored
export ANTHROPIC_API_KEY="" # required but ignored
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama # required but ignored
```
### Simple `/v1/messages` example
@@ -245,10 +235,41 @@ curl -X POST http://localhost:11434/v1/messages \
## Using with Claude Code
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend:
[Claude Code](https://code.claude.com/docs/en/overview) can be configured to use Ollama as its backend.
### Recommended models
For coding use cases, models like `glm-4.7`, `minimax-m2.1`, and `qwen3-coder` are recommended.
Download a model before use:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY=ollama claude --model qwen3-coder
ollama pull qwen3-coder
```
> Note: Qwen 3 coder is a 30B parameter model requiring at least 24GB of VRAM to run smoothly. More is required for longer context lengths.
```shell
ollama pull glm-4.7:cloud
```
### Quick setup
```shell
ollama launch claude
```
This will prompt you to select a model, configure Claude Code automatically, and launch it. To configure without launching:
```shell
ollama launch claude --config
```
### Manual setup
Set the environment variables and run Claude Code:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY="" claude --model qwen3-coder
```
Or set the environment variables in your shell profile:
@@ -256,19 +277,13 @@ Or set the environment variables in your shell profile:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_BASE_URL=http://localhost:11434
export ANTHROPIC_API_KEY=ollama
export ANTHROPIC_API_KEY=""
```
Then run Claude Code with any Ollama model:
```shell
# Local models
claude --model qwen3-coder
claude --model gpt-oss:20b
# Cloud models
claude --model glm-4.7:cloud
claude --model minimax-m2.1:cloud
```
## Endpoints

View File

@@ -8,6 +8,47 @@ title: CLI Reference
ollama run gemma3
```
### Launch integrations
```
ollama launch
```
Configure and launch external applications to use Ollama models. This provides an interactive way to set up and start integrations with supported apps.
#### Supported integrations
- **OpenCode** - Open-source coding assistant
- **Claude Code** - Anthropic's agentic coding tool
- **Codex** - OpenAI's coding assistant
- **Droid** - Factory's AI coding agent
#### Examples
Launch an integration interactively:
```
ollama launch
```
Launch a specific integration:
```
ollama launch claude
```
Launch with a specific model:
```
ollama launch claude --model qwen3-coder
```
Configure without launching:
```
ollama launch droid --config
```
#### Multiline input
For multiline input, you can wrap text with `"""`:

View File

@@ -3,8 +3,6 @@ title: Cloud
sidebarTitle: Cloud
---
<Info>Ollama's cloud is currently in preview.</Info>
## Cloud Models
Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer.

View File

@@ -8,7 +8,7 @@ Context length is the maximum number of tokens that the model has access to in m
The default context length in Ollama is 4096 tokens.
</Note>
Tasks which require large context like web search, agents, and coding tools should be set to at least 32000 tokens.
Tasks which require large context like web search, agents, and coding tools should be set to at least 64000 tokens.
## Setting context length
@@ -24,7 +24,7 @@ Change the slider in the Ollama app under settings to your desired context lengt
### CLI
If editing the context length for Ollama is not possible, the context length can also be updated when serving Ollama.
```
OLLAMA_CONTEXT_LENGTH=32000 ollama serve
OLLAMA_CONTEXT_LENGTH=64000 ollama serve
```
### Check allocated context length and model offloading

View File

@@ -102,18 +102,20 @@
"group": "Integrations",
"pages": [
"/integrations/claude-code",
"/integrations/vscode",
"/integrations/jetbrains",
"/integrations/codex",
"/integrations/clawdbot",
"/integrations/cline",
"/integrations/codex",
"/integrations/droid",
"/integrations/goose",
"/integrations/zed",
"/integrations/roo-code",
"/integrations/jetbrains",
"/integrations/marimo",
"/integrations/n8n",
"/integrations/xcode",
"/integrations/onyx",
"/integrations/marimo"
"/integrations/opencode",
"/integrations/roo-code",
"/integrations/vscode",
"/integrations/xcode",
"/integrations/zed"
]
},
{

View File

@@ -9,7 +9,7 @@ sidebarTitle: Welcome
<CardGroup cols={2}>
<Card title="Quickstart" icon="rocket" href="/quickstart">
Get up and running with your first model
Get up and running with your first model or integrate Ollama with your favorite tools
</Card>
<Card
title="Download Ollama"

View File

@@ -4,7 +4,7 @@ title: Claude Code
Claude Code is Anthropic's agentic coding tool that can read, modify, and execute code in your working directory.
Open models can be used with Claude Code through Ollama's Anthropic-compatible API, enabling you to use models such as `qwen3-coder`, `gpt-oss:20b`, or other models.
Open models can be used with Claude Code through Ollama's Anthropic-compatible API, enabling you to use models such as `glm-4.7`, `qwen3-coder`, `gpt-oss`.
![Claude Code with Ollama](https://files.ollama.com/claude-code.png)
@@ -26,12 +26,27 @@ irm https://claude.ai/install.ps1 | iex
## Usage with Ollama
### Quick setup
```shell
ollama launch claude
```
To configure without launching:
```shell
ollama launch claude --config
```
### Manual setup
Claude Code connects to Ollama using the Anthropic-compatible API.
1. Set the environment variables:
```shell
export ANTHROPIC_AUTH_TOKEN=ollama
export ANTHROPIC_API_KEY=""
export ANTHROPIC_BASE_URL=http://localhost:11434
```
@@ -44,35 +59,17 @@ claude --model gpt-oss:20b
Or run with environment variables inline:
```shell
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 claude --model gpt-oss:20b
ANTHROPIC_AUTH_TOKEN=ollama ANTHROPIC_BASE_URL=http://localhost:11434 ANTHROPIC_API_KEY="" claude --model qwen3-coder
```
**Note:** Claude Code requires a large context window. We recommend at least 32K tokens. See the [context length documentation](/context-length) for how to adjust context length in Ollama.
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) on ollama.com
2. Set the environment variables:
```shell
export ANTHROPIC_BASE_URL=https://ollama.com
export ANTHROPIC_API_KEY=<your-api-key>
```
3. Run Claude Code with a cloud model:
```shell
claude --model glm-4.7:cloud
```
**Note:** Claude Code requires a large context window. We recommend at least 64k tokens. See the [context length documentation](/context-length) for how to adjust context length in Ollama.
## Recommended Models
### Cloud models
- `glm-4.7:cloud` - High-performance cloud model
- `minimax-m2.1:cloud` - Fast cloud model
- `qwen3-coder:480b` - Large coding model
- `qwen3-coder`
- `glm-4.7`
- `gpt-oss:20b`
- `gpt-oss:120b`
Cloud models are also available at [ollama.com/search?c=cloud](https://ollama.com/search?c=cloud).
### Local models
- `qwen3-coder` - Excellent for coding tasks
- `gpt-oss:20b` - Strong general-purpose model
- `gpt-oss:120b` - Larger general-purpose model for more complex tasks

View File

@@ -0,0 +1,48 @@
---
title: Clawdbot
---
Clawdbot is a personal AI assistant that runs on your own devices. It bridges messaging services (WhatsApp, Telegram, Slack, Discord, iMessage, and more) to AI coding agents through a centralized gateway.
## Install
Install [Clawdbot](https://clawd.bot/)
```bash
npm install -g clawdbot@latest
```
Then run the onboarding wizard:
```bash
clawdbot onboard --install-daemon
```
<Note>Clawdbot requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch clawdbot
```
This configures Clawdbot to use Ollama and starts the gateway.
If the gateway is already running, no changes need to be made as the gateway will auto-reload the changes.
To configure without launching:
```shell
ollama launch clawdbot --config
```
## Recommended Models
- `qwen3-coder`
- `glm-4.7`
- `gpt-oss:20b`
- `gpt-oss:120b`
Cloud models are also available at [ollama.com/search?c=cloud](https://ollama.com/search?c=cloud).

View File

@@ -13,7 +13,21 @@ npm install -g @openai/codex
## Usage with Ollama
<Note>Codex requires a larger context window. It is recommended to use a context window of at least 32K tokens.</Note>
<Note>Codex requires a larger context window. It is recommended to use a context window of at least 64k tokens.</Note>
### Quick setup
```
ollama launch codex
```
To configure without launching:
```shell
ollama launch codex --config
```
### Manual setup
To use `codex` with Ollama, use the `--oss` flag:

View File

@@ -11,10 +11,24 @@ Install the [Droid CLI](https://factory.ai/):
curl -fsSL https://app.factory.ai/cli | sh
```
<Note>Droid requires a larger context window. It is recommended to use a context window of at least 32K tokens. See [Context length](/context-length) for more information.</Note>
<Note>Droid requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch droid
```
To configure without launching:
```shell
ollama launch droid --config
```
### Manual setup
Add a local configuration block to `~/.factory/config.json`:
```json
@@ -73,4 +87,4 @@ Add the cloud configuration block to `~/.factory/config.json`:
}
```
Run `droid` in a new terminal to load the new settings.
Run `droid` in a new terminal to load the new settings.

View File

@@ -0,0 +1,106 @@
---
title: OpenCode
---
OpenCode is an open-source AI coding assistant that runs in your terminal.
## Install
Install the [OpenCode CLI](https://opencode.ai):
```bash
curl -fsSL https://opencode.ai/install.sh | bash
```
<Note>OpenCode requires a larger context window. It is recommended to use a context window of at least 64k tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
### Quick setup
```bash
ollama launch opencode
```
To configure without launching:
```shell
ollama launch opencode --config
```
### Manual setup
Add a configuration block to `~/.config/opencode/opencode.json`:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama",
"options": {
"baseURL": "http://localhost:11434/v1"
},
"models": {
"qwen3-coder": {
"name": "qwen3-coder"
}
}
}
}
}
```
## Cloud Models
`glm-4.7:cloud` is the recommended model for use with OpenCode.
Add the cloud configuration to `~/.config/opencode/opencode.json`:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama",
"options": {
"baseURL": "http://localhost:11434/v1"
},
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud"
}
}
}
}
}
```
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) from ollama.com and export it as `OLLAMA_API_KEY`.
2. Update `~/.config/opencode/opencode.json` to point to ollama.com:
```json
{
"$schema": "https://opencode.ai/config.json",
"provider": {
"ollama": {
"npm": "@ai-sdk/openai-compatible",
"name": "Ollama Cloud",
"options": {
"baseURL": "https://ollama.com/v1"
},
"models": {
"glm-4.7:cloud": {
"name": "glm-4.7:cloud"
}
}
}
}
}
```
Run `opencode` in a new terminal to load the new settings.

View File

@@ -18,13 +18,13 @@ This quickstart will walk your through running your first model with Ollama. To
<Tab title="CLI">
Open a terminal and run the command:
```
```sh
ollama run gemma3
```
</Tab>
<Tab title="cURL">
```
```sh
ollama pull gemma3
```
@@ -45,13 +45,13 @@ This quickstart will walk your through running your first model with Ollama. To
<Tab title="Python">
Start by downloading a model:
```
```sh
ollama pull gemma3
```
Then install Ollama's Python library:
```
```sh
pip install ollama
```
@@ -101,3 +101,42 @@ This quickstart will walk your through running your first model with Ollama. To
</Tabs>
See a full list of available models [here](https://ollama.com/models).
## Coding
For coding use cases, we recommend using the `glm-4.7-flash` model.
Note: this model requires 23 GB of VRAM with 64000 tokens context length.
```sh
ollama pull glm-4.7-flash
```
Alternatively, you can use a more powerful cloud model (with full context length):
```sh
ollama pull glm-4.7:cloud
```
Use `ollama launch` to quickly set up a coding tool with Ollama models:
```sh
ollama launch
```
### Supported integrations
- [OpenCode](/integrations/opencode) - Open-source coding assistant
- [Claude Code](/integrations/claude-code) - Anthropic's agentic coding tool
- [Codex](/integrations/codex) - OpenAI's coding assistant
- [Droid](/integrations/droid) - Factory's AI coding agent
### Launch with a specific model
```sh
ollama launch claude --model glm-4.7-flash
```
### Configure without launching
```sh
ollama launch claude --config
```

View File

@@ -73,13 +73,18 @@ func manhattanDistance[V float32 | float64](v1, v2 []V) V {
}
func TestEmbedCosineDistanceCorrelation(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
started := time.Now()
for _, model := range libraryEmbedModels {
t.Run(model, func(t *testing.T) {
if time.Since(started) > softTimeout {
t.Skip("skipping - soft timeout exceeded")
}
testCases := []struct {
a string
b string
@@ -489,14 +494,19 @@ func TestEmbedTruncation(t *testing.T) {
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
started := time.Now()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
if time.Since(started) > softTimeout {
t.Skip("skipping - soft timeout exceeded")
}
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()

View File

@@ -21,9 +21,10 @@ func testPropsMap(m map[string]api.ToolProperty) *api.ToolPropertiesMap {
}
func TestAPIToolCalling(t *testing.T) {
initialTimeout := 60 * time.Second
streamTimeout := 60 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
initialTimeout := 90 * time.Second
streamTimeout := 90 * time.Second
softTimeout, hardTimeout := getTimeouts(t)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
@@ -47,8 +48,12 @@ func TestAPIToolCalling(t *testing.T) {
"granite3.3": 7,
}
started := time.Now()
for _, model := range libraryToolsModels {
t.Run(model, func(t *testing.T) {
if time.Since(started) > softTimeout {
t.Skip("skipping - soft timeout exceeded")
}
if v, ok := minVRAM[model]; ok {
skipUnderMinVRAM(t, v)
}

View File

@@ -14,25 +14,28 @@ make -f Makefile.sync apply-patches
### Updating Base Commit
**Pin to new base commit**
To update to a new base commit:
To change the base commit, update `FETCH_HEAD` in Makefile.sync.
1. **Update FETCH_HEAD** in `Makefile.sync` to the new commit hash.
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
2. **Check for upstreamed patches**: Before applying, review if any patches have been merged upstream. Remove those patches from `./patches/` to avoid conflicts.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
3. **Apply patches**:
```shell
make -f Makefile.sync apply-patches
```
```shell
make -f Makefile.sync apply-patches
```
4. **Resolve conflicts** (if any): When `git am` fails on a patch:
- Fix conflicts in `./vendor/`
- Stage the resolved files: `git -C llama/vendor add <file>`
- Continue: `git -C llama/vendor am --continue`
- Re-run: `make -f Makefile.sync apply-patches`
- Repeat until all patches are applied.
If there are conflicts, you will see an error message. Resolve the conflicts in `./vendor/`, and continue the patch series with `git am --continue` and rerun `make -f Makefile.sync apply-patches`. Repeat until all patches are successfully applied.
Once all patches are applied, commit the changes to the tracking repository.
```shell
make -f Makefile.sync format-patches sync
```
5. **Regenerate patches and sync**:
```shell
make -f Makefile.sync format-patches sync
```
### Generating Patches

2
llama/build-info.cpp generated vendored
View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "ec98e2002";
char const *LLAMA_COMMIT = "a5bb8ba4c50257437630c136210396810741bbf7";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@@ -251,7 +251,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
case GGML_SCHED_PRIO_REALTIME: p = -20; break;
}
if (!setpriority(PRIO_PROCESS, 0, p)) {
if (setpriority(PRIO_PROCESS, 0, p) != 0) {
LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
return false;
}
@@ -1078,12 +1078,15 @@ struct common_init_result::impl {
impl() = default;
~impl() = default;
// note: the order in which model, context, etc. are declared matters because their destructors will be called bottom-to-top
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
std::vector<llama_sampler_seq_config> samplers_seq_config;
};
common_init_result::common_init_result(common_params & params) :
@@ -1092,9 +1095,9 @@ common_init_result::common_init_result(common_params & params) :
auto cparams = common_context_params_to_llama(params);
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)\n", __func__);
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
@@ -1107,6 +1110,25 @@ common_init_result::common_init_result(common_params & params) :
const llama_vocab * vocab = llama_model_get_vocab(model);
// load and optionally apply lora adapters (must be loaded before context creation)
for (auto & la : params.lora_adapters) {
llama_adapter_lora_ptr lora;
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to load lora adapter '%s'\n", __func__, la.path.c_str());
pimpl->model.reset(model);
return;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
pimpl->lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
}
// updates params.sampling
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
@@ -1141,10 +1163,18 @@ common_init_result::common_init_result(common_params & params) :
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
// init the backend samplers as part of the context creation
pimpl->samplers.resize(cparams.n_seq_max);
pimpl->samplers_seq_config.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
pimpl->samplers_seq_config[i] = { i, common_sampler_get(pimpl->samplers[i].get()) };
}
if (params.sampling.backend_sampling) {
cparams.samplers = pimpl->samplers_seq_config.data();
cparams.n_samplers = pimpl->samplers_seq_config.size();
}
llama_context * lctx = llama_init_from_model(model, cparams);
@@ -1168,6 +1198,12 @@ common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
void common_init_result::reset_samplers() {
for (int i = 0; i < (int) pimpl->samplers.size(); ++i) {
llama_sampler_reset(common_sampler_get(pimpl->samplers[i].get()));
}
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
@@ -1243,24 +1279,6 @@ common_init_result_ptr common_init_from_params(common_params & params) {
}
}
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_adapter_lora_ptr lora;
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
return res;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters);
}
@@ -1301,6 +1319,9 @@ common_init_result_ptr common_init_from_params(common_params & params) {
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
// reset samplers to reset RNG state after warmup to the seeded state
res->reset_samplers();
}
return res;
@@ -1339,14 +1360,12 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.devices = params.devices.data();
}
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.n_gpu_layers = params.n_gpu_layers;
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_direct_io = params.use_direct_io;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;

View File

@@ -57,6 +57,8 @@ extern const char * LLAMA_COMMIT;
extern const char * LLAMA_COMPILER;
extern const char * LLAMA_BUILD_TARGET;
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
struct common_control_vector_load_info;
//
@@ -80,6 +82,8 @@ int32_t cpu_get_num_math();
//
enum llama_example {
LLAMA_EXAMPLE_BATCHED,
LLAMA_EXAMPLE_DEBUG,
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_COMPLETION,
@@ -117,6 +121,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
COMMON_SAMPLER_TYPE_ADAPTIVE_P = 12,
};
// dimensionality reduction methods, used by cvector-generator
@@ -164,32 +169,34 @@ enum common_params_sampling_config : uint64_t {
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float top_n_sigma = -1.00f;// -1.0 = disabled
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
float adaptive_target = -1.0f; // select tokens near this probability (valid range 0.0 to 1.0; negative = disabled)
float adaptive_decay = 0.90f; // EMA decay for adaptation; history ≈ 1/(1-decay) tokens (0.0 - 0.99)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float top_n_sigma = -1.00f; // -1.0 = disabled
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
@@ -216,6 +223,8 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool backend_sampling = false;
bool has_logit_bias() const {
return !logit_bias.empty();
}
@@ -277,6 +286,7 @@ struct common_params_diffusion {
};
// reasoning API response format (not to be confused as chat template's reasoning format)
// only used by server
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
@@ -329,12 +339,14 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
// margin per device in bytes for fitting parameters to free memory:
std::vector<size_t> fit_params_target = std::vector<size_t>(llama_max_devices(), 1024 * 1024*1024);
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@@ -370,6 +382,11 @@ struct common_params {
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
// llama-debug specific options
std::string logits_output_dir = "data"; // directory for saving logits output files // NOLINT
bool save_logits = false; // whether to save logits to files // NOLINT
std::vector<std::string> tensor_filter; // filter tensor names for debug output (regex) // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
@@ -420,7 +437,8 @@ struct common_params {
bool kv_unified = false; // enable unified KV cache
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads
bool use_mmap = true; // enable mmap to use filesystem cache
bool use_direct_io = true; // read from disk without buffering for faster model loading
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
@@ -464,6 +482,7 @@ struct common_params {
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
bool cache_prompt = true; // whether to enable prompt caching
int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
@@ -475,7 +494,8 @@ struct common_params {
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
int sleep_idle_seconds = -1; // if >0, server will sleep after this many seconds of idle time
std::vector<std::string> api_keys;
@@ -484,8 +504,11 @@ struct common_params {
std::map<std::string, std::string> default_template_kwargs;
// webui configs
bool webui = true;
std::string webui_config_json;
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = true;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
@@ -685,7 +708,9 @@ struct common_init_result {
llama_model * model();
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
void reset_samplers();
std::vector<llama_adapter_lora_ptr> & lora();

View File

@@ -104,10 +104,9 @@ struct ring_buffer {
struct common_sampler {
common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain;
bool grammar;
ring_buffer<llama_token> prev;
std::vector<llama_token_data> cur;
@@ -121,17 +120,34 @@ struct common_sampler {
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx);
const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx);
const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
if (sampled_probs) {
const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx);
cur.resize(sampled_probs_count);
for (uint32_t i = 0; i < sampled_probs_count; ++i) {
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]};
}
} else if (sampled_logits) {
const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx);
cur.resize(sampled_logits_count);
for (uint32_t i = 0; i < sampled_logits_count; i++) {
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f};
}
} else {
const auto * logits = llama_get_logits_ith(ctx, idx);
GGML_ASSERT(logits != nullptr);
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
}
cur_p = { cur.data(), cur.size(), -1, false };
@@ -151,54 +167,59 @@ std::string common_params_sampling::print() const {
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f, adaptive_target = %.3f, adaptive_decay = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
mirostat, mirostat_eta, mirostat_tau);
mirostat, mirostat_eta, mirostat_tau, adaptive_target, adaptive_decay);
return std::string(result);
}
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
lparams.no_perf = params.no_perf;
llama_sampler * grmr = nullptr;
llama_sampler * chain = llama_sampler_chain_init(lparams);
bool grammar = false;
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
samplers.push_back(llama_sampler_init_llg(vocab, "lark", params.grammar.c_str()));
grammar = true;
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<std::string> trigger_patterns;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
switch (trigger.type) {
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
{
const auto & word = trigger.value;
patterns_anywhere.push_back(regex_escape(word));
trigger_patterns.push_back(regex_escape(word));
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
{
patterns_anywhere.push_back(trigger.value);
trigger_patterns.push_back(trigger.value);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
{
trigger_patterns.push_back(trigger.value);
const auto & pattern = trigger.value;
std::string anchored = "^$";
if (!pattern.empty()) {
anchored = (pattern.front() != '^' ? "^" : "")
+ pattern
+ (pattern.back() != '$' ? "$" : "");
}
trigger_patterns.push_back(anchored);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
@@ -212,10 +233,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
}
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}
std::vector<const char *> trigger_patterns_c;
trigger_patterns_c.reserve(trigger_patterns.size());
for (const auto & regex : trigger_patterns) {
@@ -224,15 +241,12 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
if (!params.grammar.empty()) {
if (params.grammar_lazy) {
samplers.push_back(
llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size()));
grmr = llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size());
} else {
samplers.push_back(llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"));
grmr = llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}
grammar = true;
}
}
@@ -241,6 +255,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
}
if (params.mirostat == 0) {
bool use_adaptive_p = false; // see below
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
@@ -250,43 +267,54 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
samplers.push_back(llama_sampler_init_dry(vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
samplers.push_back(llama_sampler_init_top_k (params.top_k));
samplers.push_back(llama_sampler_init_top_k(params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep));
samplers.push_back(llama_sampler_init_top_p(params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep));
samplers.push_back(llama_sampler_init_min_p(params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
samplers.push_back(llama_sampler_init_xtc(params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep));
samplers.push_back(llama_sampler_init_typical(params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
samplers.push_back(llama_sampler_init_temp_ext(params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
samplers.push_back(llama_sampler_init_infill (vocab));
samplers.push_back(llama_sampler_init_infill(vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
samplers.push_back(llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
case COMMON_SAMPLER_TYPE_ADAPTIVE_P:
// the `adaptive-p` sampler is like `dist` and `mirostat` in that it selects
// a single token, so we will add `dist` at the end of the chain by default,
// unless the user specifically included `adaptive-p`. we set this flag here
// so we know to add the sampler at the very end.
use_adaptive_p = true;
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
samplers.push_back(llama_sampler_init_dist(params.seed));
if (use_adaptive_p) {
// only if user explicitly included adaptive-p sampler
samplers.push_back(llama_sampler_init_adaptive_p(params.adaptive_target, params.adaptive_decay, params.seed));
} else {
// default: sample from distribution
samplers.push_back(llama_sampler_init_dist(params.seed));
}
} else if (params.mirostat == 1) {
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
@@ -301,10 +329,16 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
llama_sampler_chain_add(chain, smpl);
}
if (grmr && params.backend_sampling) {
LOG_WRN("%s: backend sampling is not compatible with grammar, disabling\n", __func__);
params.backend_sampling = false;
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ chain,
/* .grammar = */ grammar,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
@@ -314,47 +348,45 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
}
void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->chain);
delete gsmpl;
if (!gsmpl) {
return;
}
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
}
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
if (!gsmpl) {
return;
}
const auto tm = gsmpl->tm();
if (gsmpl->grammar) {
const int n_smpl = llama_sampler_chain_n(gsmpl->chain);
for (int i = 0; i < n_smpl; i++) {
auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
// the grammar sampler is always the first one
if (i == 0) {
if (accept_grammar) {
llama_sampler_accept(smpl, token);
}
} else {
llama_sampler_accept(smpl, token);
}
}
} else {
llama_sampler_accept(gsmpl->chain, token);
if (gsmpl->grmr && accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
llama_sampler_accept(gsmpl->chain, token);
gsmpl->prev.push_back(token);
}
void common_sampler_reset(struct common_sampler * gsmpl) {
if (!gsmpl) {
return;
}
gsmpl->reset();
}
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .grammar = */ gsmpl->grammar,
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
@@ -407,10 +439,14 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) {
if (!gsmpl) {
return nullptr;
}
return gsmpl->chain;
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
@@ -418,11 +454,61 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
// Check if a backend sampler has already sampled a token in which case we
// return that token id directly.
{
id = llama_get_sampled_token_ith(ctx, idx);
if (id != LLAMA_TOKEN_NULL) {
LOG_DBG("%s: Backend sampler selected token: '%d'. Will not run any CPU samplers\n", __func__, id);
GGML_ASSERT(!gsmpl->grmr && "using grammar in combination with backend sampling is not supported");
// TODO: simplify
gsmpl->cur.resize(1);
gsmpl->cur[0] = { id, 0.0f, 1.0f };
cur_p = { gsmpl->cur.data(), gsmpl->cur.size(), 0, true };
return id;
}
}
gsmpl->set_logits(ctx, idx);
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
llama_sampler_apply(chain, &cur_p);
id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar (grammar-based rejection sampling)
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
@@ -432,7 +518,7 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
return id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result;
@@ -440,7 +526,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
size_t i = 0;
for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true);
@@ -452,7 +538,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
}
if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true);
@@ -462,13 +548,13 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
return result;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i;
}
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft);
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
}
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
@@ -553,6 +639,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_XTC: return 'x';
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
case COMMON_SAMPLER_TYPE_ADAPTIVE_P: return 'a';
default : return '?';
}
}
@@ -569,6 +656,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
case COMMON_SAMPLER_TYPE_ADAPTIVE_P: return "adaptive_p";
default : return "";
}
}
@@ -585,6 +673,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
{ "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
{ "adaptive_p", COMMON_SAMPLER_TYPE_ADAPTIVE_P },
};
// since samplers names are written multiple ways
@@ -600,6 +689,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
{ "adaptive-p", COMMON_SAMPLER_TYPE_ADAPTIVE_P },
};
std::vector<common_sampler_type> samplers;
@@ -636,6 +726,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_ADAPTIVE_P), COMMON_SAMPLER_TYPE_ADAPTIVE_P },
};
std::vector<common_sampler_type> samplers;

View File

@@ -36,7 +36,8 @@ struct common_sampler;
// llama_sampler API overloads
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
// note: can mutate params in some cases
struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params);
void common_sampler_free(struct common_sampler * gsmpl);
@@ -48,6 +49,7 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
// get the underlying llama_sampler_chain
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
@@ -57,7 +59,10 @@ struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx);
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
// generalized version of common_sampler_sample
//
@@ -75,10 +80,10 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
//
// returns at least 1 token, up to idxs.size()
//
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);

View File

@@ -21,7 +21,9 @@ struct llama_sampler_deleter {
};
struct llama_adapter_lora_deleter {
void operator()(llama_adapter_lora * adapter) { llama_adapter_lora_free(adapter); }
void operator()(llama_adapter_lora *) {
// llama_adapter_lora_free is deprecated
}
};
typedef std::unique_ptr<llama_model, llama_model_deleter> llama_model_ptr;

View File

@@ -286,7 +286,7 @@ extern "C" {
// NULL-terminated list of buffer types to use for tensors that match a pattern
const struct llama_model_tensor_buft_override * tensor_buft_overrides;
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t n_gpu_layers; // number of layers to store in VRAM, a negative value means all layers
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
// the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
@@ -309,6 +309,7 @@ extern "C" {
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_direct_io; // use direct io, takes precedence over use_mmap
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
@@ -316,6 +317,11 @@ extern "C" {
bool no_alloc; // only load metadata and simulate memory allocations
};
struct llama_sampler_seq_config {
llama_seq_id seq_id;
struct llama_sampler * sampler;
};
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggml-org/llama.cpp/pull/7544
struct llama_context_params {
@@ -364,6 +370,12 @@ extern "C" {
bool kv_unified; // use a unified buffer across the input sequences when computing the attention
// try to disable when n_seq_max > 1 for improved performance when the sequences do not share a large prefix
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
// [EXPERIMENTAL]
// backend sampler chain configuration (make sure the caller keeps the sampler chains alive)
// note: the samplers must be sampler chains (i.e. use llama_sampler_chain_init)
struct llama_sampler_seq_config * samplers;
size_t n_samplers;
};
// model quantization parameters
@@ -467,16 +479,24 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
enum llama_params_fit_status {
LLAMA_PARAMS_FIT_STATUS_SUCCESS = 0, // found allocations that are projected to fit
LLAMA_PARAMS_FIT_STATUS_FAILURE = 1, // could not find allocations that are projected to fit
LLAMA_PARAMS_FIT_STATUS_ERROR = 2, // a hard error occured, e.g. because no model could be found at the specified path
};
// fits mparams and cparams to free device memory (assumes system memory is unlimited)
// returns true if the parameters could be successfully modified to fit device memory
// this function is NOT thread safe because it modifies the global llama logger state
LLAMA_API bool llama_params_fit(
// - returns true if the parameters could be successfully modified to fit device memory
// - this function is NOT thread safe because it modifies the global llama logger state
// - only parameters that have the same value as in llama_default_model_params are modified
// with the exception of the context size which is modified if and only if equal to 0
LLAMA_API enum llama_params_fit_status llama_params_fit(
const char * path_model,
struct llama_model_params * mparams,
struct llama_context_params * cparams,
float * tensor_split, // writable buffer for tensor split, needs at least llama_max_devices elements
struct llama_model_tensor_buft_override * tensor_buft_overrides, // writable buffer for overrides, needs at least llama_max_tensor_buft_overrides elements
size_t margin, // margin of memory to leave per device in bytes
size_t * margins, // margins of memory to leave per device in bytes
uint32_t n_ctx_min, // minimum context size to set when trying to reduce memory use
enum ggml_log_level log_level); // minimum log level to print during fitting, lower levels go to debug log
@@ -517,6 +537,7 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_out (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@@ -600,6 +621,8 @@ extern "C" {
//
// Load a LoRA adapter from file
// The adapter is valid as long as the associated model is not freed
// All adapters must be loaded before context creation
LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
struct llama_model * model,
const char * path_lora);
@@ -624,7 +647,8 @@ extern "C" {
// Manually free a LoRA adapter
// NOTE: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
LLAMA_API DEPRECATED(void llama_adapter_lora_free(struct llama_adapter_lora * adapter),
"adapters are now freed together with the associated model");
// Get the invocation tokens if the current lora is an alora
LLAMA_API uint64_t llama_adapter_get_alora_n_invocation_tokens(const struct llama_adapter_lora * adapter);
@@ -983,6 +1007,32 @@ extern "C" {
// otherwise: float[n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
//
// backend sampling API [EXPERIMENTAL]
// note: use only if the llama_context was created with at least one llama_sampler_seq_config
//
// Get the backend sampled token for the ith token.
// Returns LLAMA_TOKEN_NULL if no token was sampled.
LLAMA_API llama_token llama_get_sampled_token_ith(struct llama_context * ctx, int32_t i);
// Get the backend sampled probabilites for the ith token
// The index matches llama_get_sampled_token_ith().
// Returns NULL if no probabilites were generated.
LLAMA_API float * llama_get_sampled_probs_ith (struct llama_context * ctx, int32_t i);
LLAMA_API uint32_t llama_get_sampled_probs_count_ith(struct llama_context * ctx, int32_t i);
// Get the backend sampled logits for the ith token
// Returns NULL if no logits were sampled.
LLAMA_API float * llama_get_sampled_logits_ith (struct llama_context * ctx, int32_t i);
LLAMA_API uint32_t llama_get_sampled_logits_count_ith(struct llama_context * ctx, int32_t i);
// Get the backend sampled candidates (token ids) for the ith token
// These are needed to map probability/logit indices to vocab token ids.
// Returns NULL if no candidates were sampled.
LLAMA_API llama_token * llama_get_sampled_candidates_ith (struct llama_context * ctx, int32_t i);
LLAMA_API uint32_t llama_get_sampled_candidates_count_ith(struct llama_context * ctx, int32_t i);
//
// Vocab
//
@@ -1154,11 +1204,16 @@ extern "C" {
//
// llama_sampler_free(smpl);
//
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
//
typedef void * llama_sampler_context_t;
struct llama_sampler_data {
struct ggml_tensor * logits;
struct ggml_tensor * probs;
struct ggml_tensor * sampled;
struct ggml_tensor * candidates;
};
// user code can implement the interface below in order to create custom llama_sampler
struct llama_sampler_i {
const char * (*name) (const struct llama_sampler * smpl); // can be NULL
@@ -1168,17 +1223,44 @@ extern "C" {
struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
// TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
//void (*apply_ggml) (struct llama_sampler * smpl, ...);
// [EXPERIMENTAL]
// backend sampling interface:
// return true if the backend supports all ops needed by the sampler
// note: call once per sampler
bool (*backend_init)(struct llama_sampler * smpl, ggml_backend_buffer_type_t buft);
// call after .backend_apply()
void (*backend_accept)(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_tensor * selected_token);
// call after .backend_init()
void (*backend_apply)(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data);
// called before graph execution to set inputs for the current ubatch
void (*backend_set_input)(struct llama_sampler * smpl);
};
struct llama_sampler {
const struct llama_sampler_i * iface;
llama_sampler_context_t ctx;
struct llama_sampler_i * iface;
llama_sampler_context_t ctx;
};
// [EXPERIMENTAL]
// attach a sampler to the context
// note: prefer initializing the context with llama_context_params.samplers when possible
LLAMA_API bool llama_set_sampler(struct llama_context * ctx, llama_seq_id seq_id, struct llama_sampler * smpl);
// mirror of llama_sampler_i:
LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
LLAMA_API struct llama_sampler * llama_sampler_init ( struct llama_sampler_i * iface, llama_sampler_context_t ctx);
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
@@ -1194,7 +1276,15 @@ extern "C" {
// important: takes ownership of the sampler object and will free it when llama_sampler_free is called
LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
// return NULL if:
// - the sampler is NULL
// - the sampler is not a llama_sampler_chain
// - the index is out of bounds, unless i == -1
// - if i == -1, returns the chain itself (can be used to check if the sampler is a chain)
LLAMA_API struct llama_sampler * llama_sampler_chain_get( struct llama_sampler * chain, int32_t i);
// the total number of samplers in the chain
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
@@ -1203,7 +1293,9 @@ extern "C" {
// available samplers:
LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
/// seed == LLAMA_DEFAULT_SEED to use a random seed.
LLAMA_API struct llama_sampler * llama_sampler_init_dist(uint32_t seed);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// Setting k <= 0 makes this a noop
@@ -1304,6 +1396,33 @@ extern "C" {
const char ** seq_breakers,
size_t num_breakers);
/// adaptive-p: select tokens near a configurable target probability over time.
///
/// the adaptive-p sampler transforms the token probability distribution to favor tokens
/// that fall near a user-configurable probability target.
///
/// internally, the sampler maintains an exponential moving average of the *ORIGINAL*
/// probabilities of selected tokens at each sampling step. it uses this EMA to compute an
/// adapted target probability at each sampling step, thus maintaining the desired target
/// probability over time.
///
/// adaptive-p selects a token ID rather than just mutating candidates, so it must be last
/// in the sampler chain (like mirostat, dist, greedy).
///
/// only mild truncation before this sampler is recommended. we suggest applying min-p
/// before adaptive-p as the only other active sampler in the chain.
///
/// @param target select tokens near this probability (valid range 0.0 to 1.0; negative = disabled)
/// @param decay EMA decay for adaptation; history ≈ 1/(1-decay) tokens (valid range 0.0 - 0.99)
/// @param seed RNG seed
///
/// ref: https://github.com/ggml-org/llama.cpp/pull/17927
///
LLAMA_API struct llama_sampler * llama_sampler_init_adaptive_p(
float target,
float decay,
uint32_t seed);
LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
@@ -1357,12 +1476,12 @@ extern "C" {
/// @details Build a split GGUF final path for this chunk.
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
// Returns the split_path length.
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
LLAMA_API int32_t llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int32_t split_no, int32_t split_count);
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
// Returns the split_prefix length.
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
LLAMA_API int32_t llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int32_t split_no, int32_t split_count);
// Print system information
LLAMA_API const char * llama_print_system_info(void);

View File

@@ -411,6 +411,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
}
}
// register adapter with model
model.loras.insert(&adapter);
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}
@@ -468,8 +471,8 @@ int32_t llama_adapter_meta_val_str_by_index(const llama_adapter_lora * adapter,
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
void llama_adapter_lora_free(llama_adapter_lora * adapter) {
delete adapter;
void llama_adapter_lora_free(llama_adapter_lora *) {
// deprecated: adapters are freed by llama_model's destructor
}
uint64_t llama_adapter_get_alora_n_invocation_tokens(const struct llama_adapter_lora * adapter) {

View File

@@ -77,6 +77,10 @@ struct llama_adapter_lora {
~llama_adapter_lora() = default;
llama_adapter_lora_weight * get_weight(ggml_tensor * w);
uint32_t get_n_nodes() const {
return ab_map.size() * 6u; // a, b, scale, add, 2 x mul_mat
}
};
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;

View File

@@ -20,6 +20,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_STARCODER, "starcoder" },
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_MODERN_BERT, "modern-bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
{ LLM_ARCH_NEO_BERT, "neo-bert" },
@@ -41,6 +42,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_PHIMOE, "phimoe" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_PLAMO2, "plamo2" },
{ LLM_ARCH_PLAMO3, "plamo3" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" },
@@ -79,6 +81,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_EXAONE_MOE, "exaone-moe" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_RWKV7, "rwkv7" },
@@ -115,6 +118,9 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_MAINCODER, "maincoder" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -148,6 +154,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_EMBEDDING_LENGTH_OUT, "%s.embedding_length_out" },
{ LLM_KV_FEATURES_LENGTH, "%s.features_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
@@ -205,6 +212,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_GATE_LORA_RANK, "%s.attention.gate_lora_rank" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, "%s.attention.sliding_window_pattern" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
{ LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
@@ -216,6 +224,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
@@ -500,6 +509,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
case LLM_ARCH_LLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_MISTRAL3:
case LLM_ARCH_LLAMA_EMBED:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
@@ -781,6 +791,20 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
};
case LLM_ARCH_MODERN_BERT:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
};
case LLM_ARCH_JINA_BERT_V2:
return {
LLM_TENSOR_TOKEN_EMBD,
@@ -930,6 +954,8 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
@@ -1060,6 +1086,22 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_FFN_POST_NORM,
};
case LLM_ARCH_PLAMO3:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
};
case LLM_ARCH_CODESHELL:
return {
LLM_TENSOR_TOKEN_EMBD,
@@ -1690,6 +1732,38 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_POST_NORM,
};
case LLM_ARCH_EXAONE_MOE:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,
LLM_TENSOR_NEXTN_HNORM,
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
case LLM_ARCH_RWKV6:
return {
LLM_TENSOR_TOKEN_EMBD,
@@ -2040,6 +2114,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM_LFM2,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_DENSE_2_OUT,
};
case LLM_ARCH_LFM2MOE:
return {
@@ -2058,7 +2133,7 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT_NORM_LFM2,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
@@ -2174,11 +2249,49 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
};
case LLM_ARCH_MIMO2:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_SINKS,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_GPTJ:
case LLM_ARCH_UNKNOWN:
return {
LLM_TENSOR_TOKEN_EMBD,
};
case LLM_ARCH_MAINCODER:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
};
case LLM_ARCH_SOLAR:
return {
LLM_TENSOR_TOKEN_EMBD,

View File

@@ -24,6 +24,7 @@ enum llm_arch {
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_MODERN_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_NOMIC_BERT_MOE,
LLM_ARCH_NEO_BERT,
@@ -45,6 +46,7 @@ enum llm_arch {
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_PLAMO2,
LLM_ARCH_PLAMO3,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
@@ -83,6 +85,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_EXAONE_MOE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_RWKV7,
@@ -119,6 +122,9 @@ enum llm_arch {
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_MIMO2,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_MAINCODER,
LLM_ARCH_UNKNOWN,
};
@@ -152,6 +158,7 @@ enum llm_kv {
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_EMBEDDING_LENGTH_OUT,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
@@ -209,6 +216,7 @@ enum llm_kv {
LLM_KV_ATTENTION_GATE_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_OUTPUT_SCALE,
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
@@ -220,6 +228,7 @@ enum llm_kv {
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_FREQ_BASE_SWA,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,

View File

@@ -57,6 +57,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 },
{ "exaone-moe", LLM_CHAT_TEMPLATE_EXAONE_MOE },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
@@ -74,6 +75,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
{ "solar-open", LLM_CHAT_TEMPLATE_SOLAR_OPEN },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@@ -136,6 +138,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGLM_4;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
if (tmpl_contains("<|tool_declare|>")) {
return LLM_CHAT_TEMPLATE_EXAONE_MOE;
}
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
return LLM_CHAT_TEMPLATE_GLMEDGE;
@@ -216,6 +221,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_GROK_2;
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
} else if (tmpl_contains("<|begin|>") && tmpl_contains("<|end|>") && tmpl_contains("<|content|>")) {
return LLM_CHAT_TEMPLATE_SOLAR_OPEN;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@@ -573,6 +580,22 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_MOE) {
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|system|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "user") {
ss << "<|user|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "assistant") {
ss << "<|assistant|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "tool") {
ss << "<|tool|>\n" << trim(message->content) << "<|endofturn|>\n";
}
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (size_t i = 0; i < chat.size(); i++) {
@@ -845,6 +868,14 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "[unused9]助手:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_SOLAR_OPEN) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|begin|>" << role << "<|content|>" << message->content << "<|end|>";
}
if (add_ass) {
ss << "<|begin|>assistant";
}
} else {
// template not supported
return -1;

View File

@@ -36,6 +36,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_EXAONE_4,
LLM_CHAT_TEMPLATE_EXAONE_MOE,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
@@ -54,6 +55,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_SEED_OSS,
LLM_CHAT_TEMPLATE_GROK_2,
LLM_CHAT_TEMPLATE_PANGU_EMBED,
LLM_CHAT_TEMPLATE_SOLAR_OPEN,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

File diff suppressed because it is too large Load Diff

View File

@@ -40,6 +40,14 @@ struct llama_context {
~llama_context();
// reserve a new backend scheduler (if needed)
// for example, when:
// - changing loras
// - changing samplers
// - changing attention type
// - etc.
void sched_reserve();
void synchronize();
const llama_model & get_model() const;
@@ -70,6 +78,18 @@ struct llama_context {
float * get_embeddings_ith(int32_t i);
float * get_embeddings_seq(llama_seq_id seq_id);
llama_token * get_sampled_tokens() const;
llama_token get_sampled_token_ith(int32_t idx);
float * get_sampled_logits_ith(int32_t idx);
size_t get_sampled_logits_count(int32_t idx);
float * get_sampled_probs_ith(int32_t idx);
size_t get_sampled_probs_count(int32_t idx);
const llama_token * get_sampled_candidates_ith(int32_t idx);
size_t get_sampled_candidates_count(int32_t idx);
void attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
@@ -192,10 +212,13 @@ private:
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
uint32_t output_reserve(int32_t n_outputs);
uint32_t output_reserve(int32_t n_outputs, const llama_batch & batch);
void output_reorder();
// map the output row index `i` to batch index
int64_t output_resolve_row(int32_t i) const;
//
// graph
//
@@ -213,6 +236,8 @@ public:
ggml_cgraph * graph_reserve(
uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false, size_t * sizes = nullptr);
bool set_sampler(llama_seq_id seq_id, llama_sampler * sampler);
private:
llm_graph_params graph_params(
llm_graph_result * res,
@@ -252,6 +277,31 @@ private:
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
// TODO: simplify
struct sampling_info {
std::map<llama_seq_id, llama_sampler *> samplers;
float * logits = nullptr;
size_t logits_size = 0;
llama_token * sampled = nullptr;
size_t sampled_size = 0;
float * probs = nullptr;
size_t probs_size = 0;
llama_token * candidates = nullptr;
size_t candidates_size = 0;
std::vector<uint32_t> logits_count;
std::vector<uint32_t> probs_count;
std::vector<uint32_t> candidates_count;
std::vector<llama_token> token_ids_full_vocab;
};
sampling_info sampling;
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
@@ -272,6 +322,8 @@ private:
ggml_backend_sched_ptr sched;
bool sched_need_reserve = true;
ggml_backend_t backend_cpu = nullptr;
std::vector<ggml_backend_ptr> backends;

View File

@@ -30,10 +30,12 @@ struct llama_cparams {
bool causal_attn;
bool offload_kqv;
bool flash_attn;
bool auto_fa;
bool no_perf;
bool warmup;
bool op_offload;
bool kv_unified;
bool pipeline_parallel;
enum llama_pooling_type pooling_type;

View File

@@ -369,6 +369,44 @@ static void print_rule(
fprintf(file, "\n");
}
//
// Regex utilities
//
size_t llama_grammar_trigger_pattern::find(const std::string & input) const {
auto find_start_pos = [](const std::smatch & match) {
// get from the first matched capturing group to the end of the string
size_t start = std::string::npos;
for (auto i = 1u; i < match.size(); i++) {
if (match.length(i) > 0) {
start = match.position(i);
break;
}
}
if (start == std::string::npos) {
start = match.position(0);
}
return start;
};
if (!pattern.empty() && pattern.front() == '^' && pattern.back() == '$') {
// match against the entire input
std::smatch match;
if (std::regex_match(input, match, regex)) {
return find_start_pos(match);
}
}
// search anywhere
std::smatch match;
if (std::regex_search(input, match, regex)) {
return find_start_pos(match);
}
return std::string::npos;
}
//
// implementation
//
@@ -1321,21 +1359,10 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
grammar.trigger_buffer += piece;
std::smatch match;
for (const auto & trigger_pattern : grammar.trigger_patterns) {
if (std::regex_match(grammar.trigger_buffer, match, trigger_pattern.regex)) {
auto start = trigger_pattern.find(grammar.trigger_buffer);
if (start != std::string::npos) {
grammar.awaiting_trigger = false;
// get from the first matched capturing group to the end of the string
size_t start = std::string::npos;
for (auto i = 1u; i < match.size(); i++) {
if (match.length(i) > 0) {
start = match.position(i);
break;
}
}
if (start == std::string::npos) {
start = match.position(0);
}
// replay tokens that overlap with [start, end)
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {

View File

@@ -130,6 +130,8 @@ struct llama_grammar_parser {
struct llama_grammar_trigger_pattern {
std::string pattern;
std::regex regex;
size_t find(const std::string & input) const;
};
struct llama_grammar {

View File

@@ -7,11 +7,13 @@
#include "llama-kv-cache.h"
#include "llama-kv-cache-iswa.h"
#include "llama-memory-hybrid.h"
#include "llama-memory-hybrid-iswa.h"
#include "llama-memory-recurrent.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <unordered_set>
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
if (ubatch->token) {
@@ -21,7 +23,8 @@ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
}
if (ubatch->embd) {
const int64_t n_embd = embd->ne[0];
GGML_ASSERT(n_embd == embd->ne[0]);
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
@@ -31,8 +34,8 @@ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
bool res = true;
res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens);
res &= (!params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
res &= (!params.ubatch.embd) || (embd && embd->ne[1] == params.ubatch.n_tokens);
return res;
}
@@ -62,7 +65,7 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
bool res = true;
res &= pos->ne[0] == params.ubatch.n_tokens;
res &= pos->ne[0] == params.ubatch.n_tokens*n_pos_per_embd;
return res;
}
@@ -95,11 +98,9 @@ void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
int32_t * data = (int32_t *) pos_bucket->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
}
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
}
}
}
@@ -322,34 +323,32 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
const int64_t n_tokens = ubatch->n_tokens;
const auto fill_mask = [&](float * data, int n_swa, llama_swa_type swa_type) {
for (int h = 0; h < 1; ++h) {
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
const llama_pos p1 = ubatch->pos[i1];
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
const llama_pos p1 = ubatch->pos[i1];
const uint64_t idst = h*(n_kv*n_tokens) + i1*n_kv;
const uint64_t idst = i1*n_kv;
for (int i0 = 0; i0 < n_tokens; ++i0) {
const llama_seq_id s0 = ubatch->seq_id[i0][0];
const llama_pos p0 = ubatch->pos[i0];
for (int i0 = 0; i0 < n_tokens; ++i0) {
const llama_seq_id s0 = ubatch->seq_id[i0][0];
const llama_pos p0 = ubatch->pos[i0];
// mask different sequences
if (s0 != s1) {
continue;
}
// mask future tokens
if (cparams.causal_attn && p0 > p1) {
continue;
}
// apply SWA if any
if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
continue;
}
data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
// mask different sequences
if (s0 != s1) {
continue;
}
// mask future tokens
if (cparams.causal_attn && p0 > p1) {
continue;
}
// apply SWA if any
if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
continue;
}
data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
}
};
@@ -408,6 +407,27 @@ bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
return res;
}
void llm_graph_input_attn_k::set_input(const llama_ubatch * ubatch) {
mctx->set_input_k_idxs(self_k_idxs, ubatch);
mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
}
bool llm_graph_input_attn_k::can_reuse(const llm_graph_params & params) {
const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
this->mctx = mctx;
bool res = true;
res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
res &= self_kq_mask->ne[0] == mctx->get_n_kv();
res &= self_kq_mask->ne[1] == params.ubatch.n_tokens;
return res;
}
void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);
@@ -453,27 +473,19 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
float * data = (float *) cross_kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_enc; ++j) {
float f = -INFINITY;
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_enc; ++j) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[i][s];
if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
f = 0.0f;
}
if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
f = 0.0f;
}
data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
}
}
for (int i = n_tokens; i < n_tokens; ++i) {
for (int j = 0; j < n_enc; ++j) {
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
}
data[i*n_enc + j] = f;
}
}
}
@@ -521,6 +533,113 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) {
return res;
}
void llm_graph_input_mem_hybrid_iswa::set_input(const llama_ubatch * ubatch) {
const auto * attn_ctx = mctx->get_attn();
// base tensors may not be allocated if there are no non-SWA attention layers
if (inp_attn->self_k_idxs && inp_attn->self_k_idxs->buffer) {
attn_ctx->get_base()->set_input_k_idxs(inp_attn->self_k_idxs, ubatch);
attn_ctx->get_base()->set_input_v_idxs(inp_attn->self_v_idxs, ubatch);
attn_ctx->get_base()->set_input_kq_mask(inp_attn->self_kq_mask, ubatch, cparams.causal_attn);
}
// swa tensors may not be allocated if there are no SWA attention layers
if (inp_attn->self_k_idxs_swa && inp_attn->self_k_idxs_swa->buffer) {
attn_ctx->get_swa()->set_input_k_idxs(inp_attn->self_k_idxs_swa, ubatch);
attn_ctx->get_swa()->set_input_v_idxs(inp_attn->self_v_idxs_swa, ubatch);
attn_ctx->get_swa()->set_input_kq_mask(inp_attn->self_kq_mask_swa, ubatch, cparams.causal_attn);
}
const int64_t n_rs = mctx->get_recr()->get_n_rs();
if (inp_rs->s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(inp_rs->s_copy->buffer));
int32_t * data = (int32_t *) inp_rs->s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_rs; ++i) {
data[i] = mctx->get_recr()->s_copy(i);
}
}
}
bool llm_graph_input_mem_hybrid_iswa::can_reuse(const llm_graph_params & params) {
const auto * mctx = static_cast<const llama_memory_hybrid_iswa_context *>(params.mctx);
this->mctx = mctx;
bool res = true;
const auto * attn_ctx = mctx->get_attn();
// base tensors may not be allocated if there are no non-SWA attention layers
if (inp_attn->self_k_idxs && inp_attn->self_k_idxs->buffer) {
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
//res &= inp_attn->self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= inp_attn->self_kq_mask->ne[0] == attn_ctx->get_base()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
}
// swa tensors may not be allocated if there are no SWA attention layers
if (inp_attn->self_k_idxs_swa && inp_attn->self_k_idxs_swa->buffer) {
res &= inp_attn->self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
//res &= inp_attn->self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= inp_attn->self_kq_mask_swa->ne[0] == attn_ctx->get_swa()->get_n_kv();
res &= inp_attn->self_kq_mask_swa->ne[1] == params.ubatch.n_tokens;
}
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
res &= inp_rs->s_copy_main->ne[0] == params.ubatch.n_seqs;
res &= inp_rs->s_copy_extra->ne[0] == mctx->get_recr()->get_n_rs() - params.ubatch.n_seqs;
res &= inp_rs->head == mctx->get_recr()->get_head();
res &= inp_rs->rs_z == mctx->get_recr()->get_rs_z();
return res;
}
void llm_graph_input_sampling::set_input(const llama_ubatch * ubatch) {
// set the inputs only for the active samplers in the current ubatch
std::unordered_set<llama_seq_id> active_samplers;
for (uint32_t i = 0; i < ubatch->n_tokens; i++) {
if (ubatch->output[i]) {
llama_seq_id seq_id = ubatch->seq_id[i][0];
active_samplers.insert(seq_id);
}
}
for (auto seq_id : active_samplers) {
if (samplers.find(seq_id) == samplers.end()) {
continue;
}
auto & sampler = samplers[seq_id];
if (sampler->iface->backend_set_input) {
sampler->iface->backend_set_input(sampler);
}
}
}
bool llm_graph_input_sampling::can_reuse(const llm_graph_params & params) {
if (samplers.size() != params.samplers.size()) {
return false;
}
for (const auto & [seq_id, sampler] : params.samplers) {
if (samplers[seq_id] != sampler) {
return false;
}
}
return true;
}
//
// llm_graph_result
//
@@ -537,10 +656,15 @@ int64_t llm_graph_result::get_max_nodes() const {
}
void llm_graph_result::reset() {
t_tokens = nullptr;
t_inp_tokens = nullptr;
t_inp_embd = nullptr;
t_logits = nullptr;
t_embd = nullptr;
t_embd_pooled = nullptr;
t_sampled.clear();
t_sampled_probs.clear();
t_sampled_logits.clear();
t_candidates.clear();
params = {};
@@ -565,6 +689,38 @@ void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
}
}
void llm_graph_result::set_outputs() {
if (t_logits != nullptr) {
ggml_set_output(t_logits);
}
if (t_embd != nullptr) {
ggml_set_output(t_embd);
}
if (t_embd_pooled != nullptr) {
ggml_set_output(t_embd_pooled);
}
for (auto & [seq_id, t] : t_sampled) {
if (t != nullptr) {
ggml_set_output(t);
}
}
for (auto & [seq_id, t] : t_sampled_probs) {
if (t != nullptr) {
ggml_set_output(t);
}
}
for (auto & [seq_id, t] : t_sampled_logits) {
if (t != nullptr) {
ggml_set_output(t);
}
}
for (auto & [seq_id, t] : t_candidates) {
if (t != nullptr) {
ggml_set_output(t);
}
}
}
bool llm_graph_result::can_reuse(const llm_graph_params & params) {
if (!this->params.allow_reuse(params)) {
if (debug > 1) {
@@ -646,6 +802,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
loras (params.loras),
mctx (params.mctx),
cross (params.cross),
samplers (params.samplers),
cb_func (params.cb),
res (params.res),
ctx0 (res->get_ctx()),
@@ -1204,17 +1361,29 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd_inp();
const int64_t n_embd_inp = hparams.n_embd_inp();
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_embd>();
assert(n_embd_inp >= n_embd);
ggml_tensor * cur = nullptr;
auto inp = std::make_unique<llm_graph_input_embd>(n_embd_inp);
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_inp_tokens = inp->tokens;
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd_inp, ubatch.n_tokens);
cb(inp->embd, "inp_embd", -1);
ggml_set_input(inp->embd);
// select one of the 2 inputs, based on the batch contents
// ref: https://github.com/ggml-org/llama.cpp/pull/18550
std::array<ggml_tensor *, 2> inps;
// token embeddings path (ubatch.token != nullptr)
{
auto & cur = inps[0];
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
@@ -1235,22 +1404,43 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
cur = ggml_add(ctx0, cur, inpL_delta);
}
} else {
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
ggml_set_input(inp->embd);
if (n_embd_inp != n_embd) {
cur = ggml_pad(ctx0, cur, hparams.n_embd_inp() - n_embd, 0, 0, 0);
}
}
// vector embeddings path (ubatch.embd != nullptr)
{
auto & cur = inps[1];
cur = inp->embd;
}
assert(ggml_are_same_shape (inps[0], inps[1]));
assert(ggml_are_same_stride(inps[0], inps[1]));
ggml_tensor * cur = ggml_build_forward_select(gf, inps.data(), inps.size(), ubatch.token ? 0 : 1);
if (n_embd_inp != n_embd) {
cur = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0);
}
res->t_inp_embd = cur;
// For Granite architecture
if (hparams.f_embedding_scale != 0.0f) {
cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
}
cb(cur, "inp_embd", -1);
cb(cur, "embd", -1);
res->add_input(std::move(inp));
// make sure the produced embeddings are immediately materialized in the ggml graph
// ref: https://github.com/ggml-org/llama.cpp/pull/18599
ggml_build_forward_expand(gf, cur);
return cur;
}
@@ -1342,7 +1532,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
ggml_set_input(cur);
@@ -1440,6 +1630,11 @@ ggml_tensor * llm_graph_context::build_attn_mha(
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
if (!cparams.offload_kqv) {
// all nodes between the KV store and the attention output are run on the CPU
ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
}
ggml_flash_attn_ext_add_sinks(cur, sinks);
ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
@@ -1649,9 +1844,11 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * sinks,
ggml_tensor * v_mla,
ggml_tensor * v_mla, // TODO: remove
float kq_scale,
int il) const {
GGML_ASSERT(v_mla == nullptr);
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
// expand k later to enable rope fusion which directly writes into k-v cache
@@ -1694,6 +1891,93 @@ ggml_tensor * llm_graph_context::build_attn(
return cur;
}
static std::unique_ptr<llm_graph_input_attn_k> build_attn_inp_k_impl(
ggml_context * ctx0,
const llama_ubatch & ubatch,
const llama_hparams & hparams,
const llama_cparams & cparams,
const llama_kv_cache_context * mctx_cur) {
auto inp = std::make_unique<llm_graph_input_attn_k>(hparams, cparams, mctx_cur);
{
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
const auto n_kv = mctx_cur->get_n_kv();
const auto n_tokens = ubatch.n_tokens;
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
}
return inp;
}
llm_graph_input_attn_k * llm_graph_context::build_attn_inp_k() const {
const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
auto inp = build_attn_inp_k_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
return (llm_graph_input_attn_k *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_k * inp,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * sinks,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
// expand k later to enable rope fusion which directly writes into k-v cache
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, v_cur);
ggml_build_forward_expand(gf, k_cur);
const auto * mctx_cur = inp->mctx;
// store to KV cache
{
const auto & k_idxs = inp->get_k_idxs();
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
}
const auto & kq_mask = inp->get_kq_mask();
ggml_tensor * q = q_cur;
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
ggml_tensor * v = ggml_view_4d(ctx0, k, v_cur->ne[0], k->ne[1], k->ne[2], k->ne[3], k->nb[1], k->nb[2], k->nb[3], 0);
ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
// GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_kv_iswa * inp,
ggml_tensor * wo,
@@ -1834,8 +2118,10 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
ggml_set_name(inp->self_kq_mask, "self_kq_mask");
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
ggml_set_name(inp->self_kq_mask_cnv, "self_kq_mask_cnv");
}
{
@@ -1848,8 +2134,10 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask_swa);
ggml_set_name(inp->self_kq_mask_swa, "self_kq_mask_swa");
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
ggml_set_name(inp->self_kq_mask_swa_cnv, "self_kq_mask_swa_cnv");
}
return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
@@ -1985,17 +2273,62 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}
llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_iswa_context *>(mctx);
auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
// build iswa attention input
const auto * attn_ctx = mctx_cur->get_attn();
auto inp_attn = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, attn_ctx);
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
{
const auto n_kv = attn_ctx->get_base()->get_n_kv();
inp_attn->self_k_idxs = attn_ctx->get_base()->build_input_k_idxs(ctx0, ubatch);
inp_attn->self_v_idxs = attn_ctx->get_base()->build_input_v_idxs(ctx0, ubatch);
inp_attn->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp_attn->self_kq_mask);
inp_attn->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_attn->self_kq_mask, GGML_TYPE_F16) : inp_attn->self_kq_mask;
}
{
const auto n_kv = attn_ctx->get_swa()->get_n_kv();
inp_attn->self_k_idxs_swa = attn_ctx->get_swa()->build_input_k_idxs(ctx0, ubatch);
inp_attn->self_v_idxs_swa = attn_ctx->get_swa()->build_input_v_idxs(ctx0, ubatch);
inp_attn->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp_attn->self_kq_mask_swa);
inp_attn->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_attn->self_kq_mask_swa, GGML_TYPE_F16) : inp_attn->self_kq_mask_swa;
}
auto inp = std::make_unique<llm_graph_input_mem_hybrid_iswa>(cparams, std::move(inp_attn), std::move(inp_rs), mctx_cur);
return (llm_graph_input_mem_hybrid_iswa *) res->add_input(std::move(inp));
}
void llm_graph_context::build_dense_out(
ggml_tensor * dense_2,
ggml_tensor * dense_3) const {
if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) {
if (!cparams.embeddings || !(dense_2 || dense_3)) {
return;
}
ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd;
GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd");
cur = ggml_mul_mat(ctx0, dense_2, cur);
cur = ggml_mul_mat(ctx0, dense_3, cur);
if (dense_2) {
cur = ggml_mul_mat(ctx0, dense_2, cur);
}
if (dense_3) {
cur = ggml_mul_mat(ctx0, dense_3, cur);
}
cb(cur, "result_embd_pooled", -1);
res->t_embd_pooled = cur;
ggml_build_forward_expand(gf, cur);
@@ -2086,6 +2419,87 @@ void llm_graph_context::build_pooling(
ggml_build_forward_expand(gf, cur);
}
void llm_graph_context::build_sampling() const {
if (samplers.empty() || !res->t_logits) {
return;
}
auto inp_sampling = std::make_unique<llm_graph_input_sampling>(samplers);
res->add_input(std::move(inp_sampling));
std::map<llama_seq_id, int32_t> seq_to_logit_row;
int32_t logit_row_idx = 0;
for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
if (ubatch.output[i]) {
llama_seq_id seq_id = ubatch.seq_id[i][0];
seq_to_logit_row[seq_id] = logit_row_idx;
logit_row_idx++;
}
}
// res->t_logits will contain logits for all tokens that want the logits calculated (logits=1 or output=1)
GGML_ASSERT(res->t_logits != nullptr && "missing t_logits tensor");
// add a dummy row of logits
// this trick makes the graph static, regardless of which samplers are activated
// this is important in order to minimize graph reallocations
// TODO: use `ggml_build_forward_select()` when available (https://github.com/ggml-org/llama.cpp/pull/18550)
ggml_tensor * logits_t = ggml_pad(ctx0, res->t_logits, 0, 1, 0, 0);
for (const auto & [seq_id, sampler] : samplers) {
const auto it = seq_to_logit_row.find(seq_id);
// inactive samplers always work on the first row
const auto row_idx = seq_to_logit_row.find(seq_id) != seq_to_logit_row.end() ? it->second : 0;
ggml_tensor * logits_seq = ggml_view_1d(ctx0, logits_t, logits_t->ne[0], row_idx * logits_t->nb[1]);
ggml_format_name(logits_seq, "logits_seq_%d", seq_id);
struct llama_sampler_data data = {
/*.logits =*/ logits_seq,
/*.probs =*/ nullptr,
/*.sampled =*/ nullptr,
/*.candidates =*/ nullptr,
};
assert(sampler->iface->backend_apply);
sampler->iface->backend_apply(sampler, ctx0, gf, &data);
if (data.sampled != nullptr) {
res->t_sampled[seq_id] = data.sampled;
ggml_build_forward_expand(gf, data.sampled);
}
if (data.probs != nullptr) {
res->t_sampled_probs[seq_id] = data.probs;
ggml_build_forward_expand(gf, data.probs);
}
if (data.logits != nullptr) {
res->t_sampled_logits[seq_id] = data.logits;
ggml_build_forward_expand(gf, data.logits);
}
if (data.candidates != nullptr) {
res->t_candidates[seq_id] = data.candidates;
ggml_build_forward_expand(gf, data.candidates);
}
}
// TODO: Call llama_sampler_accept_ggml after all samplers have been applied.
/*
for (const auto & [seq_id, sampler] : samplers) {
if (auto it = res->t_sampled.find(seq_id); it != res->t_sampled.end()) {
ggml_tensor * selected_token = it->second;
if (selected_token != nullptr) {
llama_sampler_accept_ggml(sampler, ctx0, gf, selected_token);
}
}
}
*/
}
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;

View File

@@ -10,6 +10,7 @@
#include <memory>
#include <set>
#include <functional>
#include <map>
struct ggml_cgraph;
struct ggml_context;
@@ -23,6 +24,7 @@ class llama_kv_cache_context;
class llama_kv_cache_iswa_context;
class llama_memory_recurrent_context;
class llama_memory_hybrid_context;
class llama_memory_hybrid_iswa_context;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
@@ -104,7 +106,7 @@ using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
class llm_graph_input_embd : public llm_graph_input_i {
public:
llm_graph_input_embd() = default;
llm_graph_input_embd(int64_t n_embd) : n_embd(n_embd) {}
virtual ~llm_graph_input_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
@@ -113,6 +115,8 @@ public:
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
const int64_t n_embd = 0;
};
class llm_graph_input_pos : public llm_graph_input_i {
@@ -313,6 +317,39 @@ public:
const llama_kv_cache_context * mctx;
};
// V-less input for the KV cache
// ref: https://github.com/ggml-org/llama.cpp/pull/19067
class llm_graph_input_attn_k : public llm_graph_input_i {
public:
llm_graph_input_attn_k(
const llama_hparams & hparams,
const llama_cparams & cparams,
const llama_kv_cache_context * mctx) :
hparams(hparams),
cparams(cparams),
mctx(mctx) {
}
~llm_graph_input_attn_k() = default;
void set_input(const llama_ubatch * ubatch) override;
bool can_reuse(const llm_graph_params & params) override;
ggml_tensor * get_k_idxs() const { return self_k_idxs; }
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch/n_stream, 1, n_stream]
const llama_hparams hparams;
const llama_cparams cparams;
const llama_kv_cache_context * mctx;
};
class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
public:
llm_graph_input_attn_kv_iswa(
@@ -396,6 +433,46 @@ public:
const llama_memory_hybrid_context * mctx;
};
class llm_graph_input_mem_hybrid_iswa : public llm_graph_input_i {
public:
llm_graph_input_mem_hybrid_iswa(
const llama_cparams & cparams,
std::unique_ptr<llm_graph_input_attn_kv_iswa> inp_attn,
std::unique_ptr<llm_graph_input_rs> inp_rs,
const llama_memory_hybrid_iswa_context * mctx) :
inp_attn(std::move(inp_attn)),
inp_rs(std::move(inp_rs)),
cparams(cparams),
mctx(mctx) { }
virtual ~llm_graph_input_mem_hybrid_iswa() = default;
void set_input(const llama_ubatch * ubatch) override;
bool can_reuse(const llm_graph_params & params) override;
std::unique_ptr<llm_graph_input_attn_kv_iswa> inp_attn;
std::unique_ptr<llm_graph_input_rs> inp_rs;
llm_graph_input_attn_kv_iswa * get_attn() const { return inp_attn.get(); }
llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
const llama_cparams cparams;
const llama_memory_hybrid_iswa_context * mctx;
};
class llm_graph_input_sampling : public llm_graph_input_i {
public:
llm_graph_input_sampling(std::map<llama_seq_id, llama_sampler *> samplers) :
samplers(std::move(samplers)) { }
virtual ~llm_graph_input_sampling() = default;
void set_input(const llama_ubatch * ubatch) override;
bool can_reuse(const llm_graph_params & params) override;
std::map<llama_seq_id, llama_sampler *> samplers;
};
//
// llm_graph_result
//
@@ -429,6 +506,23 @@ struct llm_graph_params {
const llama_memory_context_i * mctx;
const llama_cross * cross;
std::map<llama_seq_id, llama_sampler *> samplers;
static bool samplers_equal(
const std::map<llama_seq_id, llama_sampler *> & lhs,
const std::map<llama_seq_id, llama_sampler *> & rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (const auto & [seq_id, sampler] : lhs) {
auto it = rhs.find(seq_id);
if (it == rhs.end() || it->second != sampler) {
return false;
}
}
return true;
}
uint32_t n_outputs;
llm_graph_cb cb;
@@ -468,15 +562,36 @@ struct llm_graph_params {
return false;
}
if (n_outputs != other.n_outputs) {
return false;
}
if (!samplers_equal(samplers, other.samplers)) {
return false;
}
if (samplers.size() > 0) {
if (!ubatch.data || !other.ubatch.data) {
return false;
}
// check that the outputs are the same for all samplers
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
if (ubatch.output[i] != other.ubatch.output[i] ||
ubatch.seq_id[i][0] != other.ubatch.seq_id[i][0]) {
return false;
}
}
}
return
cparams.embeddings == other.cparams.embeddings &&
cparams.causal_attn == other.cparams.causal_attn &&
arch == other.arch &&
gtype == other.gtype &&
cvec == other.cvec &&
loras == other.loras &&
cross == other.cross &&
n_outputs == other.n_outputs;
arch == other.arch &&
gtype == other.gtype &&
cvec == other.cvec &&
loras == other.loras &&
cross == other.cross;
}
};
@@ -486,7 +601,7 @@ public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() const { return t_tokens; }
ggml_tensor * get_inp_tokens() const { return t_inp_tokens; }
ggml_tensor * get_logits() const { return t_logits; }
ggml_tensor * get_embd() const { return t_embd; }
ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
@@ -499,6 +614,7 @@ public:
void reset();
void set_inputs(const llama_ubatch * ubatch);
void set_outputs();
// try to update the existing graph result using the new graph parameters in order to reuse it
// this can only be done if we determine that the resulting graph using the new graph parameters
@@ -512,11 +628,17 @@ public:
void set_params(const llm_graph_params & params);
// important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_inp_tokens = nullptr;
ggml_tensor * t_inp_embd = nullptr; // [n_embd_inp, n_tokens]
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
std::map<llama_seq_id, ggml_tensor*> t_sampled_logits;
std::map<llama_seq_id, ggml_tensor*> t_candidates;
std::map<llama_seq_id, ggml_tensor*> t_sampled;
std::map<llama_seq_id, ggml_tensor*> t_sampled_probs;
std::vector<llm_graph_input_ptr> inputs;
ggml_context_ptr ctx_compute;
@@ -592,6 +714,8 @@ struct llm_graph_context {
const llama_memory_context_i * mctx;
const llama_cross * cross;
std::map<llama_seq_id, llama_sampler *> samplers;
const llm_graph_cb & cb_func;
llm_graph_result * res;
@@ -742,6 +866,21 @@ struct llm_graph_context {
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * sinks, // [n_head_q]
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v] // TODO: remove
float kq_scale,
int il) const;
llm_graph_input_attn_k * build_attn_inp_k() const;
ggml_tensor * build_attn(
llm_graph_input_attn_k * inp,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * sinks, // [n_head_q]
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
@@ -822,6 +961,8 @@ struct llm_graph_context {
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
llm_graph_input_mem_hybrid_iswa * build_inp_mem_hybrid_iswa() const;
//
// pooling
//
@@ -832,6 +973,12 @@ struct llm_graph_context {
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const;
//
// sampling (backend sampling)
//
void build_sampling() const;
//
// dense (out)
//

View File

@@ -72,6 +72,10 @@ uint32_t llama_hparams::n_embd_inp() const {
return n_embd_inp;
}
uint32_t llama_hparams::n_embd_out() const {
return n_embd_out_impl > 0 ? n_embd_out_impl : n_embd;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
@@ -179,6 +183,21 @@ bool llama_hparams::is_swa(uint32_t il) const {
GGML_ABORT("fatal error");
}
bool llama_hparams::is_mla() const {
assert((n_embd_head_k_mla_impl == 0 && n_embd_head_v_mla_impl == 0) ||
(n_embd_head_k_mla_impl != 0 && n_embd_head_v_mla_impl != 0));
return n_embd_head_k_mla_impl != 0 && n_embd_head_v_mla_impl != 0;
}
uint32_t llama_hparams::n_embd_head_k_mla() const {
return is_mla() ? n_embd_head_k_mla_impl : n_embd_head_k;
}
uint32_t llama_hparams::n_embd_head_v_mla() const {
return is_mla() ? n_embd_head_v_mla_impl : n_embd_head_v;
}
bool llama_hparams::has_kv(uint32_t il) const {
if (n_layer_kv_from_start >= 0) {
if (il < (uint32_t) n_layer_kv_from_start) {
@@ -204,42 +223,6 @@ uint32_t llama_hparams::n_layer_kv() const {
return res;
}
bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
assert(p0 >= 0 && p1 >= 0);
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE:
{
} break;
case LLAMA_SWA_TYPE_STANDARD:
{
if (p1 - p0 >= (int32_t) n_swa) {
return true;
}
} break;
case LLAMA_SWA_TYPE_CHUNKED:
{
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
if (p0 < pos_chunk_start) {
return true;
}
} break;
case LLAMA_SWA_TYPE_SYMMETRIC:
{
const int32_t half_n_swa = (int32_t) n_swa / 2;
const int32_t pos_diff = p1 - p0;
// Mask if outside the symmetric window
if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
return true;
}
} break;
}
return false;
}
bool llama_hparams::use_mrope() const {
return rope_sections[0] > 0 && rope_sections[1] > 0;
}

View File

@@ -3,6 +3,7 @@
#include "llama.h"
#include <array>
#include <cassert>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
@@ -52,8 +53,8 @@ struct llama_hparams {
uint32_t n_rel_attn_bkts = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
uint32_t n_embd_head_v_mla = 0;
uint32_t n_embd_head_k_mla_impl = 0;
uint32_t n_embd_head_v_mla_impl = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
@@ -107,9 +108,9 @@ struct llama_hparams {
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_base_train_swa;
float rope_freq_base_train_swa = 10000.0f;
float rope_freq_scale_train;
float rope_freq_scale_train_swa;
float rope_freq_scale_train_swa = 1.0f;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul = 0.0f;
@@ -125,10 +126,11 @@ struct llama_hparams {
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
// the size of the sliding window (0 - no SWA)
uint32_t n_swa = 0;
// if swa_layers[il] == true, then layer il is SWA
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
// if swa_layers[il] == 1, then layer il is SWA
// if swa_layers[il] == 0, then layer il is dense (i.e. non-SWA)
// by default, all layers are dense
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
// note: using uint32_t type for compatibility reason
std::array<uint32_t, LLAMA_MAX_LAYERS> swa_layers;
// for State Space Models
uint32_t ssm_d_conv = 0;
@@ -163,6 +165,9 @@ struct llama_hparams {
// for Classifiers
uint32_t n_cls_out = 1;
// output embedding dimension (0 = use n_embd)
uint32_t n_embd_out_impl = 0;
// llama4 smallthinker
uint32_t n_moe_layer_step = 0;
uint32_t n_no_rope_layer_step = 4;
@@ -235,6 +240,9 @@ struct llama_hparams {
// dimension of main + auxiliary input embeddings
uint32_t n_embd_inp() const;
// dimension of output embeddings
uint32_t n_embd_out() const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
@@ -266,15 +274,57 @@ struct llama_hparams {
bool is_swa(uint32_t il) const;
// note: currently only support if either all or none of the layers are MLA
bool is_mla() const;
uint32_t n_embd_head_k_mla() const;
uint32_t n_embd_head_v_mla() const;
bool has_kv(uint32_t il) const;
// number of layers for which has_kv() returns true
uint32_t n_layer_kv() const;
// note that this function uses different SWA parameters from those in the hparams
// note: inlined on purpose for performance reasons
// TODO: think of a better place for this function
// TODO: pack the SWA params in a struct?
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
assert(p0 >= 0 && p1 >= 0);
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE:
{
} break;
case LLAMA_SWA_TYPE_STANDARD:
{
if (p1 - p0 >= (int32_t) n_swa) {
return true;
}
} break;
case LLAMA_SWA_TYPE_CHUNKED:
{
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
if (p0 < pos_chunk_start) {
return true;
}
} break;
case LLAMA_SWA_TYPE_SYMMETRIC:
{
const int32_t half_n_swa = (int32_t) n_swa / 2;
const int32_t pos_diff = p1 - p0;
// Mask if outside the symmetric window
if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
return true;
}
} break;
}
return false;
}
bool use_mrope() const;
};

View File

@@ -97,6 +97,8 @@ llama_kv_cache::llama_kv_cache(
__func__, hparams.n_embd_v_gqa_max());
}
const bool is_mla = hparams.is_mla();
for (uint32_t il = 0; il < hparams.n_layer; il++) {
if (!hparams.has_kv(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il);
@@ -130,18 +132,21 @@ llama_kv_cache::llama_kv_cache(
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
const bool has_k = true;
const bool has_v = !is_mla;
ggml_format_name(k, "cache_k_l%d", il);
ggml_format_name(v, "cache_v_l%d", il);
ggml_tensor * k = has_k ? ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream) : nullptr;
ggml_tensor * v = has_v ? ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream) : nullptr;
has_k && ggml_format_name(k, "cache_k_l%d", il);
has_v && ggml_format_name(v, "cache_v_l%d", il);
std::vector<ggml_tensor *> k_stream;
std::vector<ggml_tensor *> v_stream;
for (uint32_t s = 0; s < n_stream; ++s) {
k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
k_stream.push_back(has_k ? ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]) : nullptr);
v_stream.push_back(has_v ? ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]) : nullptr);
}
map_layer_ids[il] = layers.size();
@@ -647,7 +652,10 @@ bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_co
const auto & layer = layers[il];
ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
if (layer.v_stream[ssrc]) {
ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
}
}
}
}
@@ -852,7 +860,7 @@ llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch,
const llama_seq_id seq_id_cell = cells.seq_get(idx);
// SWA mask
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
if (llama_hparams::is_masked_swa(n_swa, swa_type, pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
can_use = true;
}
}
@@ -1237,6 +1245,197 @@ void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
}
}
struct args_set_input_kq_mask {
const llama_hparams & hparams;
const llama_ubatch * ubatch;
const std::vector<llama_kv_cells> & v_cells;
const std::vector<uint32_t> & seq_to_stream;
uint32_t n_swa;
llama_swa_type swa_type;
int64_t n_kv;
int64_t n_stream;
int64_t n_tps;
};
template<bool causal, bool swa, bool is_2d, bool alibi>
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
//const auto & hparams = args.hparams;
const auto & ubatch = args.ubatch;
const auto & v_cells = args.v_cells;
const auto & seq_to_stream = args.seq_to_stream;
const uint32_t n_swa = args.n_swa;
const llama_swa_type swa_type = args.swa_type;
const int64_t n_kv = args.n_kv;
const int64_t n_stream = args.n_stream;
const int64_t n_tps = args.n_tps;
// the min position in the batch for each sequence
llama_pos seq_pos_min[LLAMA_MAX_SEQ];
std::fill(seq_pos_min, seq_pos_min + LLAMA_MAX_SEQ, INT32_MAX);
for (uint32_t i = 0; i < ubatch->n_tokens; ++i) {
const llama_seq_id seq_id = ubatch->seq_id[i][0];
seq_pos_min[seq_id] = std::min(seq_pos_min[seq_id], ubatch->pos[i]);
}
for (uint32_t s = 0; s < n_stream; ++s) {
// bookeeping of the KQ mask cells that could change for other tokens of the same sequence
std::unordered_map<llama_seq_id, uint32_t> seq_srct;
std::unordered_map<llama_seq_id, std::vector<uint32_t>> seq_idxs;
for (uint32_t ii = 0; ii < n_tps; ++ii) {
const uint32_t i = s*n_tps + ii;
const llama_seq_id seq_id = ubatch->seq_id[i][0];
const auto & cells = v_cells.at(seq_to_stream[seq_id]);
llama_pos p0 = -1;
const llama_pos p1 = ubatch->pos[i];
// for M-RoPE
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
const uint64_t idst = n_kv*i;
// for tokens of the same sequence, the mask is mostly the same, so we can reuse it
// the only cells that could change are the ones that are with similar positions as the
// ones in the batch (i.e. due to causal masking, SWA, etc.)
// keep track of those cells and shortcut the loop to save time
// note: this optimization is not compatible with Alibi position encoding
// ref: https://github.com/ggml-org/llama.cpp/pull/18842
bool prev = false;
auto & idxs = seq_idxs[seq_id];
if (!alibi) {
if (seq_srct.find(seq_id) != seq_srct.end()) {
const uint32_t srct = seq_srct[seq_id];
const uint64_t idst_prev = n_kv*srct;
std::copy(data + idst_prev, data + idst_prev + n_kv, data + idst);
prev = true;
} else {
idxs.clear();
idxs.reserve(ubatch->n_tokens + n_swa + 32);
seq_srct[seq_id] = i;
}
}
for (uint32_t jj = 0; jj < n_kv; ++jj) {
uint32_t j = jj;
// we have an exiting mask for this sequence -> update just seq_idxs
if (!alibi) {
if (prev) {
if (jj >= idxs.size()) {
break;
}
j = idxs[jj];
}
}
if (cells.is_empty(j)) {
goto skip;
}
// mask the token if not the same sequence
if (!cells.seq_has(j, seq_id)) {
goto skip;
}
p0 = cells.pos_get(j);
if (!alibi) {
if (!prev) {
// record all cells for which: p0 >= seq_pos_min[seq_id] - n_swa - 32
if (p0 + (int32_t) (n_swa + 32) >= seq_pos_min[seq_id]) {
idxs.push_back(j);
}
}
}
if (causal) {
// mask future tokens
if (p0 > p1) {
goto skip;
}
// M-RoPE causal mask
if (is_2d) {
if (p0 == p1) {
const auto & p0_ext = cells.ext_get(j);
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
goto skip;
}
}
}
}
// apply SWA if any
if (swa) {
if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
goto skip;
}
}
if (alibi) {
data[idst + j] = -std::abs(p0 - p1);
} else {
data[idst + j] = 0.0f;
}
continue;
skip:
data[idst + j] = -INFINITY;
}
}
}
}
template<bool causal, bool swa, bool is_2d>
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
const bool alibi = args.hparams.use_alibi;
if (alibi) {
set_input_kq_mask_impl<causal, swa, is_2d, true> (args, data);
} else {
set_input_kq_mask_impl<causal, swa, is_2d, false>(args, data);
}
}
template<bool causal, bool swa>
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
const bool is_2d = args.ubatch->is_pos_2d();
if (is_2d) {
set_input_kq_mask_impl<causal, swa, true> (args, data);
} else {
set_input_kq_mask_impl<causal, swa, false>(args, data);
}
}
template<bool causal>
static void set_input_kq_mask_impl(const args_set_input_kq_mask & args, float * data) {
const bool swa = args.swa_type != LLAMA_SWA_TYPE_NONE;
if (swa) {
set_input_kq_mask_impl<causal, true> (args, data);
} else {
set_input_kq_mask_impl<causal, false>(args, data);
}
}
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
@@ -1251,74 +1450,29 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
// n_tps == n_tokens_per_stream
const int64_t n_tps = n_tokens/n_stream;
std::fill(data, data + ggml_nelements(dst), -INFINITY);
//const int64_t t_start = ggml_time_us();
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
// TODO: optimize this section
for (uint32_t h = 0; h < 1; ++h) {
for (uint32_t s = 0; s < n_stream; ++s) {
for (uint32_t ii = 0; ii < n_tps; ++ii) {
const uint32_t i = s*n_tps + ii;
const args_set_input_kq_mask args = {
/*.hparams =*/ hparams,
/*.ubatch =*/ ubatch,
/*.v_cells =*/ v_cells,
/*.seq_to_stream =*/ seq_to_stream,
/*.n_swa =*/ n_swa,
/*.swa_type =*/ swa_type,
/*.n_kv =*/ n_kv,
/*.n_stream =*/ n_stream,
/*.n_tps =*/ n_tps,
};
const llama_seq_id seq_id = ubatch->seq_id[i][0];
const auto & cells = v_cells[seq_to_stream[seq_id]];
const llama_pos p1 = ubatch->pos[i];
// for M-RoPE
const bool is_2d = ubatch->is_pos_2d();
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
const uint64_t idst = n_kv*(h*n_stream*n_tps + s*n_tps + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
if (cells.is_empty(j)) {
continue;
}
// mask the token if not the same sequence
if (!cells.seq_has(j, seq_id)) {
continue;
}
const llama_pos p0 = cells.pos_get(j);
// mask future tokens
if (causal_attn && p0 > p1) {
continue;
}
// M-RoPE causal mask
if (causal_attn && is_2d && p0 == p1) {
const auto & p0_ext = cells.ext_get(j);
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
continue;
}
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
}
data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
}
}
if (causal_attn) {
set_input_kq_mask_impl<true> (args, data);
} else {
set_input_kq_mask_impl<false>(args, data);
}
//const int64_t t_end = ggml_time_us();
//LLAMA_LOG_ERROR("%s: kq mask time: %0.3f ms\n", __func__, (t_end - t_start)/1000.0);
}
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
@@ -1370,7 +1524,7 @@ size_t llama_kv_cache::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & layer : layers) {
size_v_bytes += ggml_nbytes(layer.v);
size_v_bytes += layer.v ? ggml_nbytes(layer.v) : 0;
}
return size_v_bytes;
@@ -1448,6 +1602,10 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
const auto & n_rot = hparams.n_rot;
const auto n_embd_nope = hparams.n_lora_kv > 0 ? n_embd_head_k - n_rot : 0;
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
@@ -1468,10 +1626,10 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
ggml_tensor * k =
ggml_view_3d(ctx, layer.k,
n_embd_head_k, n_head_kv, get_size()*n_stream,
n_rot, n_head_kv, get_size()*n_stream,
ggml_row_size(layer.k->type, n_embd_head_k),
ggml_row_size(layer.k->type, n_embd_k_gqa),
0);
ggml_row_size(layer.k->type, n_embd_nope));
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
@@ -1483,10 +1641,6 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
return gf;
}
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
}
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
GGML_UNUSED(flags);
@@ -1652,6 +1806,9 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
if (!v) {
continue;
}
// Write value type
const int32_t v_type_i = (int32_t) v->type;
@@ -1678,6 +1835,9 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
if (!v) {
continue;
}
// Write value type
const int32_t v_type_i = (int32_t) v->type;
@@ -1881,6 +2041,9 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
if (!v) {
continue;
}
// Read type of value
int32_t v_type_i_ref;
@@ -1922,6 +2085,9 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
if (!v) {
continue;
}
// Read type of value
int32_t v_type_i_ref;

View File

@@ -257,8 +257,6 @@ private:
size_t size_k_bytes() const;
size_t size_v_bytes() const;
bool is_masked_swa(llama_pos p0, llama_pos p1) const;
ggml_tensor * build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
@@ -305,7 +303,7 @@ public:
bool do_shift,
stream_copy_info sc_info);
// used to create a batch procesing context from a batch
// used to create a batch processing context from a batch
llama_kv_cache_context(
llama_kv_cache * kv,
slot_info_vec_t sinfos,

View File

@@ -0,0 +1,275 @@
#include "llama-memory-hybrid-iswa.h"
#include "llama-impl.h"
#include "llama-model.h"
#include "llama-context.h"
//
// llama_memory_hybrid_iswa
//
llama_memory_hybrid_iswa::llama_memory_hybrid_iswa(
const llama_model & model,
/* attn */
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool swa_full,
uint32_t kv_size,
uint32_t n_ubatch,
uint32_t n_pad,
/* recurrent */
ggml_type type_r,
ggml_type type_s,
uint32_t rs_size,
/* common */
uint32_t n_seq_max,
bool offload,
bool unified,
/* layer filters */
const layer_filter_cb & filter_attn,
const layer_filter_cb & filter_recr) :
hparams(model.hparams),
mem_attn(new llama_kv_cache_iswa(
model,
type_k,
type_v,
v_trans,
offload,
swa_full,
unified,
kv_size,
n_seq_max,
n_ubatch,
n_pad,
filter_attn == nullptr ?
[&](int32_t il) { return !hparams.is_recurrent(il); }
: filter_attn,
nullptr
)),
mem_recr(new llama_memory_recurrent(
model,
type_r,
type_s,
offload,
rs_size,
n_seq_max,
filter_recr == nullptr ?
[&](int32_t il) { return hparams.is_recurrent(il); }
: filter_recr
)) {}
llama_memory_context_ptr llama_memory_hybrid_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
do {
balloc.split_reset();
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
while (true) {
llama_ubatch ubatch;
if (embd_all) {
// if all tokens are output, split by sequence
ubatch = balloc.split_seq(n_ubatch);
} else {
// TODO: non-sequential equal split can be done if using unified KV cache
// for simplicity, we always use sequential equal split for now
ubatch = balloc.split_equal(n_ubatch, true);
}
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (balloc.get_n_used() < balloc.get_n_tokens()) {
// failed to find a suitable split
break;
}
// prepare the recurrent batches first
if (!mem_recr->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined context at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache (iswa version returns both base and swa slot infos)
auto sinfos_base = mem_attn->get_base()->prepare(ubatches);
if (sinfos_base.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention base ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
auto sinfos_swa = mem_attn->get_swa()->prepare(ubatches);
if (sinfos_swa.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention swa ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_memory_hybrid_iswa_context>(
this, std::move(sinfos_base), std::move(sinfos_swa), std::move(ubatches));
} while(false);
return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_context_ptr llama_memory_hybrid_iswa::init_full() {
return std::make_unique<llama_memory_hybrid_iswa_context>(this);
}
llama_memory_context_ptr llama_memory_hybrid_iswa::init_update(llama_context * lctx, bool optimize) {
return std::make_unique<llama_memory_hybrid_iswa_context>(this, lctx, optimize);
}
bool llama_memory_hybrid_iswa::get_can_shift() const {
// Shifting is trivially supported for recurrent
return mem_attn->get_can_shift();
}
void llama_memory_hybrid_iswa::clear(bool data) {
mem_attn->clear(data);
mem_recr->clear(data);
}
bool llama_memory_hybrid_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
// Try removing from the recurrent cache first since it may fail. If it does
// fail, the cache will not have been mutated.
if (!mem_recr->seq_rm(seq_id, p0, p1)) {
return false;
}
return mem_attn->seq_rm(seq_id, p0, p1);
}
void llama_memory_hybrid_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
void llama_memory_hybrid_iswa::seq_keep(llama_seq_id seq_id) {
mem_attn->seq_keep(seq_id);
mem_recr->seq_keep(seq_id);
}
void llama_memory_hybrid_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
mem_attn->seq_add(seq_id, p0, p1, shift);
mem_recr->seq_add(seq_id, p0, p1, shift);
}
void llama_memory_hybrid_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
mem_attn->seq_div(seq_id, p0, p1, d);
mem_recr->seq_div(seq_id, p0, p1, d);
}
llama_pos llama_memory_hybrid_iswa::seq_pos_min(llama_seq_id seq_id) const {
// the min of the total cache is the max of the two caches' min values
return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
}
llama_pos llama_memory_hybrid_iswa::seq_pos_max(llama_seq_id seq_id) const {
// the max of the total cache is the min of the two caches' max values
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
}
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid_iswa::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
for (const auto & buft_size : mem_recr->memory_breakdown()) {
mb[buft_size.first] += buft_size.second;
}
return mb;
}
void llama_memory_hybrid_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
mem_attn->state_write(io, seq_id, flags);
mem_recr->state_write(io, seq_id, flags);
}
void llama_memory_hybrid_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
mem_attn->state_read(io, seq_id, flags);
mem_recr->state_read(io, seq_id, flags);
}
llama_kv_cache_iswa * llama_memory_hybrid_iswa::get_mem_attn() const {
return mem_attn.get();
}
llama_memory_recurrent * llama_memory_hybrid_iswa::get_mem_recr() const {
return mem_recr.get();
}
//
// llama_memory_hybrid_iswa_context
//
llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(llama_memory_status status) : status(status) {}
llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(llama_memory_hybrid_iswa * mem) :
ctx_attn(mem->get_mem_attn()->init_full()),
ctx_recr(mem->get_mem_recr()->init_full()),
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
}
llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(
llama_memory_hybrid_iswa * mem,
llama_context * lctx,
bool optimize) :
ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
}
llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(
llama_memory_hybrid_iswa * mem,
slot_info_vec_t sinfos_base,
slot_info_vec_t sinfos_swa,
std::vector<llama_ubatch> ubatches) :
ubatches(std::move(ubatches)),
// note: here we copy the ubatches. not sure if this is ideal
ctx_attn(new llama_kv_cache_iswa_context(mem->get_mem_attn(), std::move(sinfos_base), std::move(sinfos_swa), this->ubatches)),
ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
}
bool llama_memory_hybrid_iswa_context::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
ctx_attn->next();
ctx_recr->next();
if (++i_next >= ubatches.size()) {
return false;
}
return true;
}
bool llama_memory_hybrid_iswa_context::apply() {
assert(!llama_memory_status_is_fail(status));
bool res = true;
res = res & ctx_attn->apply();
res = res & ctx_recr->apply();
return res;
}
llama_memory_status llama_memory_hybrid_iswa_context::get_status() const {
return status;
}
const llama_ubatch & llama_memory_hybrid_iswa_context::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_next];
}
const llama_kv_cache_iswa_context * llama_memory_hybrid_iswa_context::get_attn() const {
return static_cast<const llama_kv_cache_iswa_context *>(ctx_attn.get());
}
const llama_memory_recurrent_context * llama_memory_hybrid_iswa_context::get_recr() const {
return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
}

View File

@@ -0,0 +1,140 @@
#pragma once
#include "llama-batch.h"
#include "llama-graph.h"
#include "llama-kv-cache-iswa.h"
#include "llama-memory.h"
#include "llama-memory-recurrent.h"
#include <memory>
#include <vector>
//
// llama_memory_hybrid_iswa
//
// utilizes instances of llama_memory_recurrent and llama_kv_cache_iswa to
// support models where each layer may be either attention-based (with SWA support) or recurrent
class llama_memory_hybrid_iswa : public llama_memory_i {
public:
llama_memory_hybrid_iswa(
const llama_model & model,
/* attn */
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool swa_full,
uint32_t kv_size,
uint32_t n_ubatch,
uint32_t n_pad,
/* recurrent */
ggml_type type_r,
ggml_type type_s,
uint32_t rs_size,
/* common */
uint32_t n_seq_max,
bool offload,
bool unified,
/* layer filters */
const layer_filter_cb & filter_attn = nullptr,
const layer_filter_cb & filter_recr = nullptr);
~llama_memory_hybrid_iswa() = default;
//
// llama_memory_i
//
llama_memory_context_ptr init_batch(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) override;
llama_memory_context_ptr init_full() override;
llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override;
bool get_can_shift() const override;
void clear(bool data) override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) override;
//
// llama_memory_hybrid_iswa specific API
//
llama_kv_cache_iswa * get_mem_attn() const;
llama_memory_recurrent * get_mem_recr() const;
private:
const llama_hparams & hparams;
const std::unique_ptr<llama_kv_cache_iswa> mem_attn;
const std::unique_ptr<llama_memory_recurrent> mem_recr;
};
class llama_memory_hybrid_iswa_context : public llama_memory_context_i {
public:
using slot_info_vec_t = llama_kv_cache::slot_info_vec_t;
// init failure
explicit llama_memory_hybrid_iswa_context(llama_memory_status status);
// init full
explicit llama_memory_hybrid_iswa_context(llama_memory_hybrid_iswa * mem);
// init update
explicit llama_memory_hybrid_iswa_context(
llama_memory_hybrid_iswa * mem,
llama_context * lctx,
bool optimize);
// init success
llama_memory_hybrid_iswa_context(
llama_memory_hybrid_iswa * mem,
slot_info_vec_t sinfos_base,
slot_info_vec_t sinfos_swa,
std::vector<llama_ubatch> ubatches);
~llama_memory_hybrid_iswa_context() = default;
bool next() override;
bool apply() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
//
// llama_memory_hybrid_iswa_context
//
const llama_kv_cache_iswa_context * get_attn() const;
const llama_memory_recurrent_context * get_recr() const;
private:
// the index of the next ubatch to process
size_t i_next = 0;
std::vector<llama_ubatch> ubatches;
const llama_memory_context_ptr ctx_attn;
const llama_memory_context_ptr ctx_recr;
const llama_memory_status status;
};

View File

@@ -13,9 +13,10 @@
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
@@ -74,7 +75,7 @@ struct llama_file::impl {
return ret;
}
impl(const char * fname, const char * mode) {
impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
@@ -109,7 +110,7 @@ struct llama_file::impl {
}
}
void read_raw(void * ptr, size_t len) const {
void read_raw(void * ptr, size_t len) {
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
@@ -126,7 +127,7 @@ struct llama_file::impl {
}
}
uint32_t read_u32() const {
uint32_t read_u32() {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
@@ -153,16 +154,55 @@ struct llama_file::impl {
write_raw(&val, sizeof(val));
}
bool has_direct_io() const {
return true;
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#else
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) : fname(fname) {
#ifdef __linux__
// Try unbuffered I/O for read only
if (use_direct_io && std::strcmp(mode, "rb") == 0) {
if (init_fd()) {
return;
}
LLAMA_LOG_WARN("Failed to open file '%s' with error: %s. Falling back to buffered I/O",
fname, strerror(errno));
}
#endif
init_fp(mode);
}
#ifdef __linux__
bool init_fd() {
fd = open(fname.c_str(), O_RDONLY | O_DIRECT);
if (fd != -1) {
struct stat file_stats{};
fstat(fd, &file_stats);
size = file_stats.st_size;
alignment = file_stats.st_blksize;
off_t ret = lseek(fd, 0, SEEK_SET);
if (ret == -1) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
return true;
}
return false;
}
#endif
void init_fp(const char * mode) {
fp = ggml_fopen(fname.c_str(), mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
throw std::runtime_error(format("failed to open %s: %s", fname.c_str(), strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
@@ -170,46 +210,122 @@ struct llama_file::impl {
}
size_t tell() const {
// TODO: this ifdef is never true?
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
if (fd == -1) {
long ret = std::ftell(fp);
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
return (size_t) ret;
off_t pos = lseek(fd, 0, SEEK_CUR);
if (pos == -1) {
throw std::runtime_error(format("lseek error: %s", strerror(errno)));
}
return (size_t) pos;
}
void seek(size_t offset, int whence) const {
// TODO: this ifdef is never true?
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
if (ret != 0) {
off_t ret = 0;
if (fd == -1) {
ret = std::fseek(fp, (long) offset, whence);
} else {
ret = lseek(fd, offset, whence);
}
if (ret == -1) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
void read_raw_unsafe(void * ptr, size_t len) {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
if (fd == -1) {
const size_t curr_off = tell();
const size_t to_read = std::min(len, size - curr_off);
std::size_t ret = std::fread(ptr, to_read, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (to_read > 0 && ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
}
} else {
size_t bytes_read = 0;
while (bytes_read < len) {
const size_t to_read = len - bytes_read;
ssize_t ret = ::read(fd, reinterpret_cast<char *>(ptr) + bytes_read, to_read);
if (ret == -1) {
if (errno == EINTR) {
continue; // Interrupted by signal, retry
}
// Fallback to std::fread in case the DMA controller cannot access the buffer
if (errno == EFAULT || errno == EINVAL) {
LLAMA_LOG_WARN("%s: Falling back to buffered IO due to %s\n", __func__, strerror(errno));
auto curr_off = tell();
close(fd);
fd = -1;
alignment = 1;
init_fp("rb");
seek(curr_off, SEEK_SET);
read_raw_unsafe(ptr, len);
return;
}
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret == 0) {
// EOF: allow if this read was only pulling alignment padding past file end
off_t pos = lseek(fd, 0, SEEK_CUR);
if (pos != -1 && (size_t) pos == size) {
std::memset(reinterpret_cast<char *>(ptr) + bytes_read, 0, len - bytes_read);
return;
}
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += (size_t) ret;
}
}
}
uint32_t read_u32() const {
void read_aligned_chunk(void * dest, size_t size) {
size_t offset = tell();
off_t aligned_offset = offset & ~(alignment - 1);
off_t offset_from_alignment = offset - aligned_offset;
size_t bytes_to_read = (offset_from_alignment + size + alignment - 1) & ~(alignment - 1);
void * raw_buffer = nullptr;
int ret = posix_memalign(&raw_buffer, alignment, bytes_to_read);
if (ret != 0) {
throw std::runtime_error(format("posix_memalign failed with error %d", ret));
}
struct aligned_buffer_deleter {
void operator()(void * p) const { free(p); }
};
std::unique_ptr<void, aligned_buffer_deleter> buffer(raw_buffer);
seek(aligned_offset, SEEK_SET);
read_raw_unsafe(buffer.get(), bytes_to_read);
uintptr_t actual_data = reinterpret_cast<uintptr_t>(buffer.get()) + offset_from_alignment;
memcpy(dest, reinterpret_cast<void *>(actual_data), size);
}
void read_raw(void * ptr, size_t len) {
if (has_direct_io()) {
read_aligned_chunk(ptr, len);
} else {
read_raw_unsafe(ptr, len);
}
}
uint32_t read_u32() {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
@@ -230,27 +346,48 @@ struct llama_file::impl {
write_raw(&val, sizeof(val));
}
bool has_direct_io() const {
return fd != -1 && alignment > 1;
}
~impl() {
if (fp) {
if (fd != -1) {
close(fd);
} else {
std::fclose(fp);
}
}
int fd = -1;
std::string fname;
#endif
FILE * fp;
size_t size;
size_t read_alignment() const {
return alignment;
}
size_t alignment = 1;
FILE * fp{};
size_t size{};
};
llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique<impl>(fname, mode)) {}
llama_file::llama_file(const char * fname, const char * mode, const bool use_direct_io) :
pimpl(std::make_unique<impl>(fname, mode, use_direct_io)) {}
llama_file::~llama_file() = default;
size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
size_t llama_file::read_alignment() const { return pimpl->read_alignment(); }
bool llama_file::has_direct_io() const { return pimpl->has_direct_io(); }
int llama_file::file_id() const {
#ifdef _WIN32
return _fileno(pimpl->fp);
#else
if (pimpl->fd != -1) {
return pimpl->fd;
}
#if defined(fileno)
return fileno(pimpl->fp);
#else
@@ -260,9 +397,14 @@ int llama_file::file_id() const {
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
void llama_file::read_raw(void * ptr, size_t len) { pimpl->read_raw(ptr, len); }
#ifdef _WIN32
void llama_file::read_raw_unsafe(void * ptr, size_t len) { pimpl->read_raw(ptr, len); }
#else
void llama_file::read_raw_unsafe(void * ptr, size_t len) { pimpl->read_raw_unsafe(ptr, len); }
#endif
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
uint32_t llama_file::read_u32() { return pimpl->read_u32(); }
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }
@@ -476,9 +618,9 @@ struct llama_mlock::impl {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
#if defined(TARGET_OS_VISION) || defined(TARGET_OS_TV) || defined(_AIX)
// visionOS/tvOS dont't support RLIMIT_MEMLOCK
// Skip resource limit checks on visionOS/tvOS
#if defined(TARGET_OS_VISION) || defined(TARGET_OS_TV) || defined(_AIX) || defined(__HAIKU__)
// visionOS/tvOS/Haiku don't support RLIMIT_MEMLOCK
// Skip resource limit checks on these platforms
suggest = false;
#else
struct rlimit lock_limit;

View File

@@ -3,6 +3,7 @@
#include <cstdint>
#include <memory>
#include <vector>
#include <cstdio>
struct llama_file;
struct llama_mmap;
@@ -13,7 +14,7 @@ using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
struct llama_file {
llama_file(const char * fname, const char * mode);
llama_file(const char * fname, const char * mode, bool use_direct_io = false);
~llama_file();
size_t tell() const;
@@ -23,12 +24,16 @@ struct llama_file {
void seek(size_t offset, int whence) const;
void read_raw(void * ptr, size_t len) const;
uint32_t read_u32() const;
void read_raw(void * ptr, size_t len);
void read_raw_unsafe(void * ptr, size_t len);
void read_aligned_chunk(void * dest, size_t size);
uint32_t read_u32();
void write_raw(const void * ptr, size_t len) const;
void write_u32(uint32_t val) const;
size_t read_alignment() const;
bool has_direct_io() const;
private:
struct impl;
std::unique_ptr<impl> pimpl;

View File

@@ -2,6 +2,7 @@
#include "ggml.h"
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstring>
@@ -344,6 +345,7 @@ namespace GGUFMeta {
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx, kid);
switch (arr_info.gt) {
case GGUF_TYPE_BOOL:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
(std::is_same<T, uint32_t>::value)); break;
@@ -365,7 +367,13 @@ namespace GGUFMeta {
result[i] = value;
}
} else {
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
if (arr_info.gt == GGUF_TYPE_BOOL) {
std::transform((const bool *)arr_info.data, (const bool *)arr_info.data + arr_info.length, result.begin(), [](bool x) {
return static_cast<T>(x);
});
} else {
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
}
}
return true;
@@ -462,6 +470,29 @@ namespace GGUFMeta {
return get_key_or_arr(llm_kv(kid), result, n, required);
}
bool llama_model_loader::get_key_or_arr(enum llm_kv kid, uint32_t & result, bool required) {
const std::string key = llm_kv(kid);
const int id = gguf_find_key(meta.get(), key.c_str());
if (id < 0) {
if (required) {
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
}
return false;
}
// throw and error if type is an array
if (gguf_get_kv_type(meta.get(), id) == GGUF_TYPE_ARRAY) {
if (required) {
throw std::runtime_error(format("expected scalar, found array for key: %s", key.c_str()));
}
return false;
}
return get_key(key, result, required);
}
// TODO: this is not very clever - figure out something better
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
@@ -472,6 +503,7 @@ llama_model_loader::llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits,
bool use_mmap,
bool use_direct_io,
bool check_tensors,
bool no_alloc,
const llama_model_kv_override * param_overrides_p,
@@ -504,9 +536,23 @@ llama_model_loader::llama_model_loader(
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
files.emplace_back(new llama_file(fname.c_str(), "rb"));
files.emplace_back(new llama_file(fname.c_str(), "rb", use_direct_io));
contexts.emplace_back(ctx);
if (use_mmap && use_direct_io) {
if (files.back()->has_direct_io()) {
// Disable mmap, as DirectIO is available
use_mmap = false;
LLAMA_LOG_WARN("%s: direct I/O is enabled, disabling mmap\n", __func__);
} else {
// Disable DirectIO and reopen file using std::fopen for mmap
use_direct_io = false;
files.pop_back();
files.emplace_back(new llama_file(fname.c_str(), "rb", false));
LLAMA_LOG_WARN("%s: direct I/O is not available, using mmap\n", __func__);
}
}
// Save tensors data offset of the main file.
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
@@ -572,7 +618,7 @@ llama_model_loader::llama_model_loader(
}
}
files.emplace_back(new llama_file(fname_split, "rb"));
files.emplace_back(new llama_file(fname_split, "rb", use_direct_io));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
@@ -716,6 +762,7 @@ llama_model_loader::llama_model_loader(
}
this->use_mmap = use_mmap;
this->use_direct_io = use_direct_io;
this->check_tensors = check_tensors;
this->no_alloc = no_alloc;
}
@@ -935,7 +982,15 @@ bool llama_model_loader::load_all_data(
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t n_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
size_t alignment = 1;
for (const auto & file : files) {
alignment = std::max(file->read_alignment(), alignment);
}
// Buffer size: balance between memory usage and I/O efficiency
// 64MB works well for NVMe drives
const size_t buffer_size = alignment != 1 ? 64 * 1024 * 1024 + 2 * alignment : 1 * 1024 * 1024;
std::vector<ggml_backend_buffer_t> host_buffers;
std::vector<ggml_backend_event_t> events;
@@ -985,6 +1040,7 @@ bool llama_model_loader::load_all_data(
// If the backend is supported, create pinned memory buffers and events for synchronisation.
for (size_t idx = 0; idx < n_buffers; ++idx) {
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
if (!buf) {
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func,
ggml_backend_dev_name(dev));
@@ -1066,6 +1122,7 @@ bool llama_model_loader::load_all_data(
}
} else {
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, n_size);
@@ -1077,19 +1134,54 @@ bool llama_model_loader::load_all_data(
} else {
// If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
if (upload_backend) {
file->seek(weight->offs, SEEK_SET);
size_t offset = weight->offs;
alignment = file->read_alignment();
size_t aligned_offset = offset & ~(alignment - 1);
size_t offset_from_alignment = offset - aligned_offset;
file->seek(aligned_offset, SEEK_SET);
// Calculate aligned read boundaries
size_t read_start = aligned_offset;
size_t read_end = (offset + n_size + alignment - 1) & ~(alignment - 1);
size_t bytes_read = 0;
size_t data_read = 0; // Actual tensor data copied (excluding padding)
while (bytes_read < n_size) {
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
while (bytes_read < read_end - read_start) {
size_t read_size = std::min<size_t>(buffer_size, read_end - read_start - bytes_read);
// Align the destination pointer within the pinned buffer
uintptr_t ptr_dest_aligned = (reinterpret_cast<uintptr_t>(host_ptrs[buffer_idx]) + alignment - 1) & ~(alignment - 1);
// Wait for previous upload to complete before reusing buffer
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
// Read aligned chunk from file
file->read_raw_unsafe(reinterpret_cast<void *>(ptr_dest_aligned), read_size);
// Calculate actual data portion (excluding alignment padding)
uintptr_t ptr_data = ptr_dest_aligned;
size_t data_to_copy = read_size;
// Skip alignment padding at start of first chunk
if (bytes_read == 0) {
ptr_data += offset_from_alignment;
data_to_copy -= offset_from_alignment;
}
// Trim alignment padding at end of last chunk
if (aligned_offset + bytes_read + read_size > offset + n_size) {
data_to_copy -= (read_end - (offset + n_size));
}
// Async upload actual data to GPU
ggml_backend_tensor_set_async(upload_backend, cur,
reinterpret_cast<void *>(ptr_data), data_read, data_to_copy);
ggml_backend_event_record(events[buffer_idx], upload_backend);
bytes_read += read_iteration;
data_read += data_to_copy;
bytes_read += read_size;
++buffer_idx;
buffer_idx %= n_buffers;
}

View File

@@ -70,6 +70,7 @@ struct llama_model_loader {
size_t n_bytes = 0;
bool use_mmap = false;
bool use_direct_io = false;
bool check_tensors;
bool no_alloc;
@@ -97,6 +98,7 @@ struct llama_model_loader {
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool use_direct_io,
bool check_tensors,
bool no_alloc,
const llama_model_kv_override * param_overrides_p,
@@ -131,6 +133,8 @@ struct llama_model_loader {
template<typename T>
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true);
bool get_key_or_arr(enum llm_kv kid, uint32_t & result, bool required = true);
std::string get_arch_name() const;
enum llm_arch get_arch() const;

View File

@@ -146,6 +146,9 @@ void llama_model_saver::add_kv_from_model() {
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
if (hparams.n_embd_out_impl > 0) {
add_kv(LLM_KV_EMBEDDING_LENGTH_OUT, hparams.n_embd_out_impl);
}
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);

File diff suppressed because it is too large Load Diff

View File

@@ -11,6 +11,7 @@
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
struct llama_cparams;
@@ -24,12 +25,14 @@ enum llm_type {
LLM_TYPE_17M,
LLM_TYPE_22M,
LLM_TYPE_33M,
LLM_TYPE_47M,
LLM_TYPE_60M,
LLM_TYPE_70M,
LLM_TYPE_80M,
LLM_TYPE_109M,
LLM_TYPE_137M,
LLM_TYPE_140M,
LLM_TYPE_149M,
LLM_TYPE_160M,
LLM_TYPE_190M,
LLM_TYPE_220M,
@@ -39,6 +42,7 @@ enum llm_type {
LLM_TYPE_335M,
LLM_TYPE_350M,
LLM_TYPE_360M,
LLM_TYPE_395M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_475M,
@@ -117,10 +121,12 @@ enum llm_type {
LLM_TYPE_31B_A3_5B,
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_102B_A12B, // Solar-Open
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_310B_A15B, // /MiMo-V2-Flash
LLM_TYPE_355B_A32B, // GLM-4.5
LLM_TYPE_E2B,
LLM_TYPE_E4B,
@@ -465,8 +471,6 @@ struct llama_model {
struct ggml_tensor * dense_2_out_layers = nullptr;
struct ggml_tensor * dense_3_out_layers = nullptr;
llama_model_params params;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
@@ -476,6 +480,9 @@ struct llama_model {
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
// for keeping track of associated LoRA adapters
std::unordered_set<llama_adapter_lora *> loras;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
@@ -497,6 +504,9 @@ struct llama_model {
size_t n_tensors() const;
size_t n_devices() const;
uint32_t n_gpu_layers() const;
llama_split_mode split_mode() const;
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const;
// total number of parameters in the model
@@ -525,6 +535,8 @@ struct llama_model {
ggml_cgraph * build_graph(const llm_graph_params & params) const;
private:
llama_model_params params;
struct impl;
std::unique_ptr<impl> pimpl;
};

View File

@@ -422,57 +422,6 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
++qs.i_ffn_up;
}
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
{
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
new_type = GGML_TYPE_F16;
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
return new_type;
}
@@ -596,7 +545,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
}
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, /*no_alloc*/ false, kv_overrides, nullptr);
llama_model_loader ml(fname_inp, splits, use_mmap, /*use_direct_io*/ true, /*check_tensors*/ true, /*no_alloc*/ false, kv_overrides, nullptr);
ml.init_mappings(false); // no prefetching
llama_model model(llama_model_default_params());
@@ -875,21 +824,69 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
int fallback = qs.n_fallback;
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
// unless the user specifies a type, and the tensor geometry will not require fallback quantisation
if (params->tensor_types && qs.n_fallback - fallback == 0) {
// if the user provided tensor types - use those
bool manual = false;
if (params->tensor_types) {
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
const std::string tensor_name(tensor->name);
for (const auto & [tname, qtype] : tensor_types) {
if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) {
if (qtype != new_type) {
LLAMA_LOG_DEBUG("(overriding %s) ", ggml_type_name(new_type));
LLAMA_LOG_WARN("(manual override: %s -> %s) ", ggml_type_name(new_type), ggml_type_name(qtype));
new_type = qtype; // if two or more types are specified for the same tensor, the last match wins
manual = true;
break;
}
}
}
}
// if not manual - use the standard logic for choosing the quantization type based on the selected mixture
if (!manual) {
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
}
// incompatible tensor shapes are handled here - fallback to a compatible type
{
bool convert_incompatible_tensor = false;
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
new_type = GGML_TYPE_F16;
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
}
}
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type;

File diff suppressed because it is too large Load Diff

View File

@@ -14,7 +14,19 @@ struct llama_grammar;
struct llama_sampler_chain {
llama_sampler_chain_params params;
std::vector<struct llama_sampler *> samplers;
// has .backend_init() been called?
bool is_init = false;
struct info {
bool is_backend;
llama_sampler * ptr;
};
std::vector<info> samplers;
// pre-allocated buffer for llama_sampler_sample to avoid repeated allocations
std::vector<llama_token_data> cur;
// timing
@@ -24,9 +36,9 @@ struct llama_sampler_chain {
};
struct llama_sampler * llama_sampler_init_dry_testing(
int32_t context_size,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
int32_t dry_penalty_last_n,
const std::vector<std::vector<llama_token>>& seq_breakers);
int32_t context_size,
float dry_multiplier,
float dry_base,
int32_t dry_allowed_length,
int32_t dry_penalty_last_n,
const std::vector<std::vector<llama_token>> & seq_breakers);

View File

@@ -314,6 +314,12 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_YOUTU:
regex_exprs = {
"[가-힣ㄱ-ㆎ]+|[!…“”‘’—:;,、-〿︰-]+|[ㄅ-ㄯ]+|[一-龥぀-ゟ゠-ヿ]+",
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
regex_exprs = {
"[\r\n]",
@@ -355,6 +361,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
case LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
@@ -454,6 +461,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?(?:\\p{L}\\p{M}*(?: \\p{L}\\p{M}*)*)+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]?|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+"
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?(?:\\p{L}\\p{M}*(?: \\p{L}\\p{M}*)*)+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]?|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@@ -1849,6 +1863,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "deepseek-v3") {
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
clean_spaces = false;
} else if (
tokenizer_pre == "youtu") {
pre_type = LLAMA_VOCAB_PRE_TYPE_YOUTU;
clean_spaces = false;
ignore_merges = true;
} else if (
tokenizer_pre == "falcon") {
pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
@@ -1867,7 +1886,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "jina-v2-es" ||
tokenizer_pre == "jina-v2-de" ||
tokenizer_pre == "a.x-4.0" ||
tokenizer_pre == "mellum") {
tokenizer_pre == "mellum" ||
tokenizer_pre == "modern-bert" ) {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "jina-v1-en" ||
@@ -1941,6 +1961,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if (
tokenizer_pre == "exaone4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "exaone-moe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE;
} else if (
tokenizer_pre == "chameleon") {
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
@@ -2003,6 +2026,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "minimax-m2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
clean_spaces = false;
} else if (
tokenizer_pre == "solar-open") {
pre_type = LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN;
clean_spaces = false;
} else {
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
@@ -2049,6 +2076,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
}
const uint32_t n_scores = score_idx != -1 ? gguf_get_arr_n(ctx, score_idx) : 0;
const int * toktypes = nullptr;
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
if (toktype_idx != -1) {
@@ -2070,7 +2098,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
auto & token_data = id_to_token[i];
token_data.text = std::move(word);
token_data.score = scores ? scores[i] : 0.0f;
token_data.score = (scores && i < n_scores) ? scores[i] : 0.0f;
token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
@@ -2176,6 +2204,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// for now, we apply this workaround to find the tokens based on their text
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
if (special_eot_id == LLAMA_TOKEN_NULL) {
if (false
@@ -2191,10 +2221,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<end_of_utterance>" // smoldocling
) {
special_eot_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2205,10 +2235,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|eom_id|>"
) {
special_eom_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2225,10 +2255,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_prefix|>" // GLM-4.5
) {
special_fim_pre_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2245,10 +2275,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_suffix|>" // GLM-4.5
) {
special_fim_suf_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2265,10 +2295,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_middle|>" // GLM-4.5
) {
special_fim_mid_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2282,10 +2312,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<PAD>"
) {
special_fim_pad_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2300,10 +2330,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<reponame>" // Granite
) {
special_fim_rep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@@ -2314,15 +2344,41 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|file_sep|>" // Qwen
) {
special_fim_sep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
}
// auto-detect unused tokens: e.g. control tokens with the word "unused"
// ideally, these tokens should be marked as unused during conversion
{
uint32_t n_unused = 0;
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
continue;
}
if ((attr & LLAMA_TOKEN_ATTR_UNUSED) == 0) {
if (strstr(t.first.c_str(), "unused") != NULL) {
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_UNUSED);
}
}
if (attr & LLAMA_TOKEN_ATTR_UNUSED) {
n_unused++;
}
}
LLAMA_LOG_INFO("%s: %u unused tokens\n", __func__, n_unused);
}
// maintain a list of tokens that cause end-of-generation
// this is currently determined based on the token text, which is obviously not ideal
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
@@ -2341,12 +2397,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
}
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if (false
|| t.first == "<|eot_id|>"
|| t.first == "<|im_end|>"
|| t.first == "<|end|>"
|| t.first == "<|return|>" // o200k_harmony
|| t.first == "<|call|>" // o200k_harmony
|| t.first == "<|flush|>" // solar-open
|| t.first == "<|calls|>" // solar-open
|| t.first == "<end_of_turn>"
|| t.first == "<|endoftext|>"
|| t.first == "<|eom_id|>"
@@ -2356,24 +2416,31 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<end_of_utterance>" // smoldocling
) {
special_eog_ids.insert(t.second);
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
} else {
// token is control, but not marked as EOG -> print a debug log
if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
__func__, t.second, t.first.c_str());
if (attr & LLAMA_TOKEN_ATTR_CONTROL && !(attr & LLAMA_TOKEN_ATTR_UNUSED)) {
// token is control, but not marked as EOG -> print a debug log
if (special_eog_ids.count(t.second) == 0) {
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
__func__, t.second, t.first.c_str());
}
}
}
}
// @ngxson : quick hack for gpt-oss, always render these tokens
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>" || t.first == "<|constrain|>") {
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
LLAMA_LOG_WARN("%s: setting token '%s' (%d) attribute to USER_DEFINED (%u), old attributes: %u\n",
__func__, t.first.c_str(), t.second, LLAMA_TOKEN_ATTR_USER_DEFINED, attr);
attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
}
}
@@ -2393,34 +2460,42 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
}
// TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
// TODO: workaround for o200k_harmony and solar-open tokenizer: the "<|end|>" token should not be EOG
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens ("<|calls|>" and "<|flush|>" for solar-open),
// we remove the "<|end|>" token from the EOG list
{
bool has_return = false;
bool has_call = false;
bool has_end = false;
bool has_flush = false;
llama_token end_id = LLAMA_TOKEN_NULL;
LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
for (auto tid : special_eog_ids) {
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
auto & text = id_to_token[tid].text;
if (id_to_token[tid].text == "<|return|>") {
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, text.c_str());
if (text == "<|return|>") {
has_return = true;
} else if (id_to_token[tid].text == "<|call|>") {
} else if (text == "<|call|>" || text == "<|calls|>") {
has_call = true;
} else if (id_to_token[tid].text == "<|end|>") {
} else if (text == "<|flush|>") {
has_flush = true;
} else if (text == "<|end|>") {
has_end = true;
end_id = tid;
}
}
if (has_return && has_call && has_end) {
if ((has_return && has_call && has_end) || (has_call && has_flush && has_end)) {
special_eog_ids.erase(end_id);
id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
auto & attr = id_to_token[end_id].attr;
attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>', or '<|calls|>' and '<|flush|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
}
}
}
@@ -2518,6 +2593,13 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
}
} else if (_contains_any(model_name, {"modern-bert"})) {
if (token_to_id.count("[MASK]") == 0 ) {
LLAMA_LOG_WARN("%s: Mask token missing in vocab!\n", __func__);
}
else {
_set_token_attr("[MASK]", LLAMA_TOKEN_ATTR_LSTRIP, true);
}
}
}
}
@@ -3211,34 +3293,34 @@ int32_t llama_vocab::impl::detokenize(
}
void llama_vocab::impl::print_info() const {
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
// special tokens
if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
for (const auto & id : special_eog_ids) {
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
}
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
}
llama_vocab::llama_vocab() : pimpl(new impl(*this)) {

View File

@@ -51,6 +51,9 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45,
};
struct LLM_KV;

View File

@@ -71,8 +71,9 @@ static std::vector<llama_device_memory_data> llama_get_device_memory_data(
}, &ud);
llama_model_params mparams_copy = *mparams;
mparams_copy.no_alloc = true;
mparams_copy.use_mmap = false;
mparams_copy.no_alloc = true;
mparams_copy.use_mmap = false;
mparams_copy.use_mlock = false;
llama_model * model = llama_model_load_from_file(path_model, mparams_copy);
if (model == nullptr) {
@@ -110,8 +111,20 @@ static std::vector<llama_device_memory_data> llama_get_device_memory_data(
}
}
for (size_t i = 0; i < ret.size(); i++) {
size_t free, total;
size_t free;
size_t total;
ggml_backend_dev_memory(model->devices[i], &free, &total);
// devices can return 0 bytes for free and total memory if they do not
// have any to report. in this case, we will use the host memory as a fallback
// fixes: https://github.com/ggml-org/llama.cpp/issues/18577
if (free == 0 && total == 0) {
ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
ggml_backend_dev_memory(cpu_dev, &free, &total);
}
ret[i].free = free;
ret[i].total = total;
}
@@ -139,12 +152,15 @@ enum layer_fraction_t {
};
// this enum is only used in llama_params_fit_impl but needs to be defined outside of it to fix a Windows compilation issue
class llama_params_fit_exception : public std::runtime_error {
using std::runtime_error::runtime_error;
};
static void llama_params_fit_impl(
const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams,
float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides,
size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
size_t * margins_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
constexpr int64_t MiB = 1024*1024;
const int64_t margin = margin_s; // this function uses int64_t rather than size_t for memory sizes to more conveniently handle deficits
typedef std::vector<llama_device_memory_data> dmds_t;
const llama_model_params default_mparams = llama_model_default_params();
@@ -163,6 +179,12 @@ static void llama_params_fit_impl(
return;
}
std::vector<int64_t> margins; // this function uses int64_t rather than size_t for memory sizes to more conveniently handle deficits
margins.reserve(nd);
for (size_t id = 0; id < nd; id++) {
margins.push_back(margins_s[id]);
}
std::vector<std::string> dev_names;
{
dev_names.reserve(nd);
@@ -180,11 +202,12 @@ static void llama_params_fit_impl(
}
}
int64_t sum_total = 0;
int64_t sum_projected_free = 0;
int64_t min_projected_free = INT64_MAX;
int64_t sum_projected_used = 0;
int64_t sum_projected_ctx = 0;
int64_t sum_free = 0;
int64_t sum_projected_free = 0;
int64_t sum_projected_used = 0;
int64_t sum_projected_model = 0;
std::vector<int64_t> projected_free_per_device;
projected_free_per_device.reserve(nd);
if (nd > 1) {
LLAMA_LOG_INFO("%s: projected memory use with initial parameters [MiB]:\n", __func__);
@@ -194,63 +217,106 @@ static void llama_params_fit_impl(
const int64_t projected_used = dmd.mb.total();
const int64_t projected_free = dmd.free - projected_used;
projected_free_per_device.push_back(projected_free);
sum_total += dmd.total;
sum_projected_used += projected_used;
sum_projected_free += projected_free;
min_projected_free = std::min(min_projected_free, projected_free);
sum_projected_ctx += dmd.mb.context;
sum_free += dmd.free;
sum_projected_used += projected_used;
sum_projected_free += projected_free;
sum_projected_model += dmd.mb.model;
if (nd > 1) {
LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " %s\n",
__func__, dev_names[id].c_str(), dmd.total/MiB, projected_used/MiB, std::abs(projected_free)/MiB,
projected_free >= 0 ? "surplus" : "deficit");
LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " free vs. target of %6" PRId64 "\n",
__func__, dev_names[id].c_str(), dmd.total/MiB, projected_used/MiB, projected_free/MiB, margins[id]/MiB);
}
}
assert(sum_total >= 0 && sum_projected_used >= 0 && sum_projected_ctx >= 0);
assert(sum_projected_used >= sum_projected_ctx);
assert(sum_free >= 0 && sum_projected_used >= 0);
LLAMA_LOG_INFO("%s: projected to use %" PRId64 " MiB of device memory vs. %" PRId64 " MiB of free device memory\n",
__func__, sum_projected_used/MiB, sum_total/MiB);
if (min_projected_free >= margin) {
if (nd == 1) {
__func__, sum_projected_used/MiB, sum_free/MiB);
if (nd == 1) {
if (projected_free_per_device[0] >= margins[0]) {
LLAMA_LOG_INFO("%s: will leave %" PRId64 " >= %" PRId64 " MiB of free device memory, no changes needed\n",
__func__, min_projected_free/MiB, margin/MiB);
__func__, projected_free_per_device[0]/MiB, margins[0]/MiB);
return;
}
} else {
bool changes_needed = false;
for (size_t id = 0; id < nd; id++) {
if (projected_free_per_device[id] < margins[id]) {
changes_needed = true;
break;
}
}
if (!changes_needed) {
LLAMA_LOG_INFO("%s: targets for free memory can be met on all devices, no changes needed\n", __func__);
return;
}
LLAMA_LOG_INFO("%s: will leave at least %" PRId64 " >= %" PRId64 " MiB of free memory on all devices, no changes needed\n",
__func__, min_projected_free/MiB, margin/MiB);
return;
}
// step 2: try reducing memory use by reducing the context size
{
int64_t global_surplus = sum_projected_free - int64_t(nd)*margin;
int64_t global_surplus = sum_projected_free;
for (size_t id = 0; id < nd; id++) {
global_surplus -= margins[id];
}
if (global_surplus < 0) {
LLAMA_LOG_INFO(nd == 1 ?
"%s: cannot fulfill margin of %" PRId64 " MiB, need to reduce device memory by %" PRId64 " MiB\n" :
"%s: cannot fulfill margin of %" PRId64 " MiB on all devices, need to use %" PRId64 " MiB less in total\n",
__func__, margin/MiB, -global_surplus/MiB);
if (nd == 1) {
LLAMA_LOG_INFO("%s: cannot meet free memory target of %" PRId64 " MiB, need to reduce device memory by %" PRId64 " MiB\n",
__func__, margins[0]/MiB, -global_surplus/MiB);
} else {
LLAMA_LOG_INFO(
"%s: cannot meet free memory targets on all devices, need to use %" PRId64 " MiB less in total\n",
__func__, -global_surplus/MiB);
}
if (cparams->n_ctx == 0) {
if (hp_nct > n_ctx_min) {
const int64_t bytes_per_ctx = sum_projected_ctx / hp_nct;
const uint32_t ctx_reduction = std::min(
uint32_t((-global_surplus + bytes_per_ctx - 1) / bytes_per_ctx), hp_nct - n_ctx_min);
cparams->n_ctx = hp_nct - ctx_reduction;
const int64_t memory_reduction = ctx_reduction * bytes_per_ctx;
global_surplus += memory_reduction;
LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
__func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
if (global_surplus >= 0) {
int64_t sum_used_target = sum_free;
for (size_t id = 0; id < nd; id++) {
sum_used_target -= margins[id];
}
if (nd > 1) {
// for multiple devices we need to be more conservative in terms of how much context we think can fit:
// - for dense models only whole layers can be assigned to devices
// - for MoE models only whole tensors can be assigned to devices, which we estimate to be <= 1/3 of a layer
// - on average we expect a waste of 0.5 layers/tensors per device
// - use slightly more than the expected average for nd devices to be safe
const int64_t model_per_layer = sum_projected_model / std::min(uint32_t(mparams->n_gpu_layers), hp_ngl);
sum_used_target -= (nd + 1) * model_per_layer / (hp_nex == 0 ? 2 : 6);
}
int64_t sum_projected_used_min_ctx = 0;
cparams->n_ctx = n_ctx_min;
const dmds_t dmds_min_ctx = llama_get_device_memory_data(path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
for (const auto & dmd : dmds_min_ctx) {
sum_projected_used_min_ctx += dmd.mb.total();
}
if (sum_used_target > sum_projected_used_min_ctx) {
// linear interpolation between minimum and maximum context size:
cparams->n_ctx += (hp_nct - n_ctx_min) * (sum_used_target - sum_projected_used_min_ctx)
/ (sum_projected_used - sum_projected_used_min_ctx);
cparams->n_ctx = std::max(cparams->n_ctx - cparams->n_ctx % 256, n_ctx_min); // round down context for CUDA backend
const int64_t bytes_per_ctx = (sum_projected_used - sum_projected_used_min_ctx) / (hp_nct - n_ctx_min);
const int64_t memory_reduction = (hp_nct - cparams->n_ctx) * bytes_per_ctx;
LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
__func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
if (nd == 1) {
LLAMA_LOG_INFO("%s: entire model can be fit by reducing context\n", __func__);
return;
}
LLAMA_LOG_INFO("%s: entire model should be fit across devices by reducing context\n", __func__);
} else {
const int64_t memory_reduction = sum_projected_used - sum_projected_used_min_ctx;
LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
__func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
}
} else {
LLAMA_LOG_INFO("%s: default model context size is %" PRIu32 " which is <= the min. context size of %" PRIu32 " -> no change\n",
__func__, hp_nct, n_ctx_min);
if (n_ctx_min == UINT32_MAX) {
LLAMA_LOG_INFO("%s: user has requested full context size of %" PRIu32 " -> no change\n", __func__, hp_nct);
} else {
LLAMA_LOG_INFO("%s: default model context size is %" PRIu32 " which is <= the min. context size of %" PRIu32 " -> no change\n",
__func__, hp_nct, n_ctx_min);
}
}
} else {
LLAMA_LOG_INFO("%s: context size set by user to %" PRIu32 " -> no change\n", __func__, cparams->n_ctx);
@@ -259,32 +325,28 @@ static void llama_params_fit_impl(
}
if (mparams->n_gpu_layers != default_mparams.n_gpu_layers) {
throw std::runtime_error("n_gpu_layers already set by user to " + std::to_string(mparams->n_gpu_layers) + ", abort");
throw llama_params_fit_exception("n_gpu_layers already set by user to " + std::to_string(mparams->n_gpu_layers) + ", abort");
}
if (nd > 1) {
if (!tensor_split) {
throw std::runtime_error("did not provide a buffer to write the tensor_split to, abort");
throw llama_params_fit_exception("did not provide a buffer to write the tensor_split to, abort");
}
if (mparams->tensor_split) {
for (size_t id = 0; id < nd; id++) {
if (mparams->tensor_split[id] != 0.0f) {
throw std::runtime_error("model_params::tensor_split already set by user, abort");
throw llama_params_fit_exception("model_params::tensor_split already set by user, abort");
}
}
}
if (mparams->split_mode == LLAMA_SPLIT_MODE_ROW) {
throw std::runtime_error("changing weight allocation for LLAMA_SPLIT_MODE_ROW not implemented, abort");
}
if (hp_ngl < 2*nd) {
throw std::runtime_error("model has only " + std::to_string(hp_ngl) + " layers but need at least "
+ std::to_string(2*nd) + " to fit memory for " + std::to_string(nd) + " devices, abort");
throw llama_params_fit_exception("changing weight allocation for LLAMA_SPLIT_MODE_ROW not implemented, abort");
}
}
if (!tensor_buft_overrides) {
throw std::runtime_error("did not provide buffer to set tensor_buft_overrides, abort");
throw llama_params_fit_exception("did not provide buffer to set tensor_buft_overrides, abort");
}
if (mparams->tensor_buft_overrides && (mparams->tensor_buft_overrides->pattern || mparams->tensor_buft_overrides->buft)) {
throw std::runtime_error("model_params::tensor_buft_overrides already set by user, abort");
throw llama_params_fit_exception("model_params::tensor_buft_overrides already set by user, abort");
}
// step 3: iteratively fill the back to front with "dense" layers
@@ -337,6 +399,11 @@ static void llama_params_fit_impl(
// for the first partial layer varying parts can overflow, all further layers use LAYER_FRACTION_MOE:
layer_fraction_t overflow_type = LAYER_FRACTION_MOE;
uint32_t n_full() const {
assert(n_layer >= n_part);
return n_layer - n_part;
}
};
const size_t ntbo = llama_max_tensor_buft_overrides();
@@ -345,8 +412,7 @@ static void llama_params_fit_impl(
auto set_ngl_tensor_split_tbo = [&](
const std::vector<ngl_t> & ngl_per_device,
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts,
llama_model_params & mparams,
const bool add_nonrepeating) {
llama_model_params & mparams) {
mparams.n_gpu_layers = 0;
for (size_t id = 0; id < nd; id++) {
mparams.n_gpu_layers += ngl_per_device[id].n_layer;
@@ -354,29 +420,25 @@ static void llama_params_fit_impl(
tensor_split[id] = ngl_per_device[id].n_layer;
}
}
assert(uint32_t(mparams.n_gpu_layers) <= hp_ngl);
uint32_t il0 = hp_ngl - mparams.n_gpu_layers; // start index for tensor buft overrides
assert(uint32_t(mparams.n_gpu_layers) <= hp_ngl + 1);
uint32_t il0 = hp_ngl + 1 - mparams.n_gpu_layers; // start index for tensor buft overrides
if (add_nonrepeating) {
mparams.n_gpu_layers += 1;
tensor_split[nd - 1] += 1;
}
mparams.tensor_split = tensor_split;
size_t itbo = 0;
for (size_t id = 0; id < nd; id++) {
il0 += ngl_per_device[id].n_layer - ngl_per_device[id].n_part;
il0 += ngl_per_device[id].n_full();
for (uint32_t il = il0; il < il0 + ngl_per_device[id].n_part; il++) {
if (itbo + 1 >= ntbo) {
tensor_buft_overrides[itbo].pattern = nullptr;
tensor_buft_overrides[itbo].buft = nullptr;
itbo++;
mparams.tensor_buft_overrides = tensor_buft_overrides;
throw std::runtime_error("llama_params_fit_n_tensor_buft_overrides() == "
+ std::to_string(ntbo) + " is insufficient for model\n");
throw llama_params_fit_exception("llama_max_tensor_buft_overrides() == "
+ std::to_string(ntbo) + " is insufficient for model");
}
tensor_buft_overrides[itbo].pattern = get_overflow_pattern(il, il == il0 ? ngl_per_device[id].overflow_type : LAYER_FRACTION_MOE);
tensor_buft_overrides[itbo].buft = overflow_bufts[id];
tensor_buft_overrides[itbo].buft = il == il0 ? overflow_bufts[id] : ggml_backend_cpu_buffer_type();
itbo++;
}
il0 += ngl_per_device[id].n_part;
@@ -391,10 +453,9 @@ static void llama_params_fit_impl(
auto get_memory_for_layers = [&](
const char * func_name,
const std::vector<ngl_t> & ngl_per_device,
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts,
const bool add_nonrepeating) -> std::vector<int64_t> {
const std::vector<ggml_backend_buffer_type_t> & overflow_bufts) -> std::vector<int64_t> {
llama_model_params mparams_copy = *mparams;
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, mparams_copy, add_nonrepeating);
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, mparams_copy);
const dmds_t dmd_nl = llama_get_device_memory_data(
path_model, &mparams_copy, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
@@ -427,9 +488,9 @@ static void llama_params_fit_impl(
const dmds_t dmds_cpu_moe = llama_get_device_memory_data(
path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
for (const llama_device_memory_data & dmd : dmds_cpu_moe) {
global_surplus_cpu_moe += dmd.free;
global_surplus_cpu_moe -= int64_t(dmd.mb.total()) + margin;
for (size_t id = 0; id < nd; id++) {
global_surplus_cpu_moe += dmds_cpu_moe[id].free;
global_surplus_cpu_moe -= int64_t(dmds_cpu_moe[id].mb.total()) + margins[id];
}
if (global_surplus_cpu_moe > 0) {
@@ -448,27 +509,18 @@ static void llama_params_fit_impl(
std::vector<int64_t> targets; // maximum acceptable memory use per device
targets.reserve(nd);
for (size_t id = 0; id < nd; id++) {
targets.push_back(dmds_full[id].free - margin);
targets.push_back(dmds_full[id].free - margins[id]);
LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB);
}
// whether for the optimal memory use we expect to load at least some MoE tensors:
const bool partial_moe = hp_nex > 0 && global_surplus_cpu_moe > 0;
std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the partial layers of a device overflow to:
std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the first partial layer of a device overflows to:
overflow_bufts.reserve(nd);
for (size_t id = 0; id < nd - 1; ++id) {
overflow_bufts.push_back(ggml_backend_dev_buffer_type(devs[id + 1]));
for (size_t id = 0; id < nd; id++) {
overflow_bufts.push_back(ggml_backend_cpu_buffer_type());
}
overflow_bufts.push_back(ggml_backend_cpu_buffer_type());
std::vector<ngl_t> ngl_per_device(nd);
std::vector<int64_t> mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts, partial_moe);
if (hp_nex > 0) {
for (size_t id = 0; id < nd; id++) {
ngl_per_device[id].overflow_type = LAYER_FRACTION_MOE;
}
}
std::vector<int64_t> mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts);
// optimize the number of layers per device using the method of false position:
// - ngl_per_device has 0 layers for each device, lower bound
@@ -476,22 +528,30 @@ static void llama_params_fit_impl(
// - interpolate the memory use / layer between low and high linearly to get a guess where it meets our target
// - check memory use of our guess, replace either the low or high bound
// - once we only have a difference of a single layer, stop and return the lower bound that just barely still fits
// - the last device has the output layer, which cannot be a partial layer
if (hp_nex == 0) {
LLAMA_LOG_INFO("%s: filling dense layers back-to-front:\n", __func__);
} else {
LLAMA_LOG_INFO("%s: filling dense-only layers back-to-front:\n", __func__);
}
uint32_t n_unassigned = hp_ngl;
for (int id = nd - 1; id >= 0; id--) {
uint32_t n_unassigned = hp_ngl + 1;
for (size_t jd = id + 1; jd < nd; ++jd) {
assert(n_unassigned >= ngl_per_device[jd].n_layer);
n_unassigned -= ngl_per_device[jd].n_layer;
}
std::vector<ngl_t> ngl_per_device_high = ngl_per_device;
ngl_per_device_high[id].n_layer = n_unassigned;
if (hp_nex > 0) {
ngl_per_device_high[id].n_part = ngl_per_device_high[id].n_layer;
ngl_per_device_high[id].n_part = size_t(id) < nd - 1 ? ngl_per_device_high[id].n_layer : ngl_per_device_high[id].n_layer - 1;
}
if (ngl_per_device_high[id].n_layer > 0) {
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts, partial_moe);
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts);
if (mem_high[id] > targets[id]) {
assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer);
uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta);
while (delta > 1) {
uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
step_size = std::max(step_size, uint32_t(1));
@@ -500,25 +560,26 @@ static void llama_params_fit_impl(
std::vector<ngl_t> ngl_per_device_test = ngl_per_device;
ngl_per_device_test[id].n_layer += step_size;
if (hp_nex) {
ngl_per_device_test[id].n_part += step_size;
ngl_per_device_test[id].n_part += size_t(id) == nd - 1 && ngl_per_device_test[id].n_part == 0 ?
step_size - 1 : step_size; // the first layer is the output layer which must always be full
}
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] <= targets[id]) {
ngl_per_device = ngl_per_device_test;
mem = mem_test;
n_unassigned -= ngl_per_device[id].n_layer;
ngl_per_device = ngl_per_device_test;
mem = mem_test;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device[id].n_layer);
} else {
ngl_per_device_high = ngl_per_device_test;
mem_high = mem_test;
LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device[id].n_layer);
LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device_high[id].n_layer);
}
delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
}
} else {
ngl_per_device = ngl_per_device_high;
n_unassigned -= ngl_per_device[id].n_layer;
assert(ngl_per_device_high[id].n_layer == n_unassigned);
ngl_per_device = ngl_per_device_high;
mem = mem_high;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device[id].n_layer);
}
}
@@ -529,7 +590,7 @@ static void llama_params_fit_impl(
__func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, mem[id]/MiB, projected_margin/MiB);
}
if (hp_nex == 0 || global_surplus_cpu_moe <= 0) {
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams, partial_moe);
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams);
return;
}
@@ -549,24 +610,20 @@ static void llama_params_fit_impl(
assert(id_dense_start < nd);
LLAMA_LOG_INFO("%s: converting dense-only layers to full layers and filling them front-to-back with overflow to next device/system memory:\n", __func__);
for (size_t id = 0; id <= id_dense_start; id++) {
for (size_t id = 0; id <= id_dense_start && id_dense_start < nd; id++) {
std::vector<ngl_t> ngl_per_device_high = ngl_per_device;
for (size_t jd = id_dense_start; jd < nd; jd++) {
const uint32_t n_layer_move = ngl_per_device_high[jd].n_layer;
const uint32_t n_layer_move = jd < nd - 1 ? ngl_per_device_high[jd].n_layer : ngl_per_device_high[jd].n_layer - 1;
ngl_per_device_high[id].n_layer += n_layer_move;
ngl_per_device_high[jd].n_layer -= n_layer_move;
ngl_per_device_high[jd].n_part = 0;
}
size_t id_dense_start_high = nd - 1;
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts, partial_moe);
std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts);
if (mem_high[id] > targets[id]) {
assert(ngl_per_device_high[id].n_layer >= ngl_per_device_high[id].n_part);
assert(ngl_per_device[id].n_layer >= ngl_per_device[id].n_part);
assert((ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
>= ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
uint32_t delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
- (ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full());
uint32_t delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full();
while (delta > 1) {
uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
step_size = std::max(step_size, uint32_t(1));
@@ -582,11 +639,11 @@ static void llama_params_fit_impl(
ngl_per_device_test[id].n_layer += n_convert_jd;
n_converted_test += n_convert_jd;
if (ngl_per_device_test[id_dense_start_test].n_layer > 0) {
if (ngl_per_device_test[id_dense_start_test].n_part > 0) {
break;
}
}
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
if (mem_test[id] <= targets[id]) {
ngl_per_device = ngl_per_device_test;
@@ -601,32 +658,38 @@ static void llama_params_fit_impl(
LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start_high=%zu\n",
__func__, id, ngl_per_device_high[id].n_layer, ngl_per_device_high[id].n_part, id_dense_start_high);
}
delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
- (ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full());
delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full();
}
} else {
ngl_per_device = ngl_per_device_high;
mem = mem_high;
id_dense_start = id_dense_start_high;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start=%zu\n",
__func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start);
}
// try to fit at least part of one more layer
if (ngl_per_device[id_dense_start].n_layer > 0) {
if (ngl_per_device[id_dense_start].n_layer > (id < nd - 1 ? 0 : 1)) {
std::vector<ngl_t> ngl_per_device_test = ngl_per_device;
size_t id_dense_start_test = id_dense_start;
ngl_per_device_test[id_dense_start_test].n_layer--;
ngl_per_device_test[id_dense_start_test].n_part--;
ngl_per_device_test[id].n_layer++;
ngl_per_device_test[id].n_part++;
if (ngl_per_device_test[id_dense_start_test].n_layer == 0) {
if (ngl_per_device_test[id_dense_start_test].n_part == 0) {
id_dense_start_test++;
}
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_UP;
std::vector<ggml_backend_buffer_type_t> overflow_bufts_test = overflow_bufts;
if (id < nd - 1) {
overflow_bufts_test[id] = ggml_backend_dev_buffer_type(devs[id + 1]);
}
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_UP\n", __func__);
std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
if (mem_test[id] < targets[id]) {
std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
ngl_per_device = ngl_per_device_test;
overflow_bufts = overflow_bufts_test;
mem = mem_test;
id_dense_start = id_dense_start_test;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", UP), id_dense_start=%zu\n",
@@ -634,9 +697,10 @@ static void llama_params_fit_impl(
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_GATE;
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_GATE\n", __func__);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
if (mem_test[id] < targets[id]) {
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
ngl_per_device = ngl_per_device_test;
overflow_bufts = overflow_bufts_test;
mem = mem_test;
id_dense_start = id_dense_start_test;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", GATE), id_dense_start=%zu\n",
@@ -645,9 +709,10 @@ static void llama_params_fit_impl(
} else {
ngl_per_device_test[id].overflow_type = LAYER_FRACTION_ATTN;
LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_ATTN\n", __func__);
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts, partial_moe);
if (mem_test[id] < targets[id]) {
mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
ngl_per_device = ngl_per_device_test;
overflow_bufts = overflow_bufts_test;
mem = mem_test;
id_dense_start = id_dense_start_test;
LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", ATTN), id_dense_start=%zu\n",
@@ -662,30 +727,41 @@ static void llama_params_fit_impl(
__func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB);
}
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams, partial_moe);
// print info for devices that were not changed during the conversion from dense only to full layers:
for (size_t id = id_dense_start + 1; id < nd; id++) {
const int64_t projected_margin = dmds_full[id].free - mem[id];
LLAMA_LOG_INFO(
"%s: - %s: %2" PRIu32 " layers (%2" PRIu32 " overflowing), %6" PRId64 " MiB used, %6" PRId64 " MiB free\n",
__func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB);
}
set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams);
}
bool llama_params_fit(
enum llama_params_fit_status llama_params_fit(
const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams,
float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides,
size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
size_t * margins, uint32_t n_ctx_min, enum ggml_log_level log_level) {
const int64_t t0_us = llama_time_us();
bool ok = true;
llama_params_fit_status status = LLAMA_PARAMS_FIT_STATUS_SUCCESS;
try {
llama_params_fit_impl(path_model, mparams, cparams, tensor_split, tensor_buft_overrides, margin_s, n_ctx_min, log_level);
llama_params_fit_impl(path_model, mparams, cparams, tensor_split, tensor_buft_overrides, margins, n_ctx_min, log_level);
LLAMA_LOG_INFO("%s: successfully fit params to free device memory\n", __func__);
} catch (const std::runtime_error & e) {
} catch (const llama_params_fit_exception & e) {
LLAMA_LOG_WARN("%s: failed to fit params to free device memory: %s\n", __func__, e.what());
ok = false;
status = LLAMA_PARAMS_FIT_STATUS_FAILURE;
} catch (const std::runtime_error & e) {
LLAMA_LOG_ERROR("%s: encountered an error while trying to fit params to free device memory: %s\n", __func__, e.what());
status = LLAMA_PARAMS_FIT_STATUS_ERROR;
}
const int64_t t1_us = llama_time_us();
LLAMA_LOG_INFO("%s: fitting params to free memory took %.2f seconds\n", __func__, (t1_us - t0_us) * 1e-6);
return ok;
return status;
}
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
struct llama_sampler_chain_params result = {
/*.no_perf =*/ true,
/*.no_perf =*/ true,
};
return result;
@@ -758,7 +834,7 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
model.t_start_us = tm.t_start_us;
try {
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.no_alloc, params.kv_overrides, params.tensor_buft_overrides);
llama_model_loader ml(fname, splits, params.use_mmap, params.use_direct_io, params.check_tensors, params.no_alloc, params.kv_overrides, params.tensor_buft_overrides);
ml.print_info();
@@ -1021,25 +1097,55 @@ int32_t llama_chat_apply_template(
// model split
//
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
int32_t llama_split_path(
char * split_path,
size_t maxlen,
const char * path_prefix,
int32_t split_no,
int32_t split_count) {
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
return strlen(split_path);
const int written = snprintf(
split_path,
maxlen,
SPLIT_PATH_FORMAT,
path_prefix,
split_no + 1,
split_count
);
if (written < 0 || (size_t) written >= maxlen) {
return 0;
}
return 0;
return (int32_t) written;
}
int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count) {
std::string str_split_path(split_path);
char postfix[32];
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
std::string str_postfix(postfix);
int32_t llama_split_prefix(
char * split_prefix,
size_t maxlen,
const char * split_path,
int32_t split_no,
int32_t split_count) {
// check if split_prefix ends with postfix
int size_prefix = str_split_path.size() - str_postfix.size();
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
snprintf(split_prefix, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
return size_prefix;
const std::string str_split_path(split_path);
char postfix[32];
snprintf(postfix, sizeof(postfix), "-%05d-of-%05d.gguf", split_no + 1, split_count);
const std::string str_postfix(postfix);
if (str_split_path.size() <= str_postfix.size()) {
return 0;
}
const size_t size_prefix = str_split_path.size() - str_postfix.size();
if (str_split_path.compare(size_prefix, std::string::npos, str_postfix) == 0) {
const size_t copy_len = std::min(size_prefix + 1, maxlen);
snprintf(split_prefix, copy_len, "%s", split_path);
return (int32_t) size_prefix;
}
return 0;

View File

@@ -22,8 +22,15 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
// dual attention normalization (pre)
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
@@ -56,19 +63,16 @@ llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_para
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
// RoPE only for sliding_attention layers
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
((il + 1) % hparams.n_no_rope_layer_step) != 0;
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur_rope", il);
}

View File

@@ -142,11 +142,13 @@ llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
const bool up_contains_gate = !model.layers[il].ffn_gate && model.layers[il].ffn_up->ne[1] != hparams.n_ff();
auto type_op = up_contains_gate ? LLM_FFN_GEGLU : LLM_FFN_GELU;
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
type_op, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,

View File

@@ -3,12 +3,14 @@
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor *inpL, *cur;
ggml_tensor * inpL;
ggml_tensor * cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
@@ -44,7 +46,7 @@ llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_pa
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{

View File

@@ -21,6 +21,9 @@ llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const
for (int il = 0; il < n_layer; ++il) {
const bool is_swa = hparams.is_swa(il);
// UNUSED:
// const float freq_base_l = model.get_rope_freq_base (cparams, il);
// const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);

View File

@@ -2,14 +2,11 @@
llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
// lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
const bool is_mla = hparams.is_mla();
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_k = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v = hparams.n_embd_head_v_mla();
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
@@ -43,7 +40,8 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
auto * inp_attn_kv = !is_mla ? build_attn_inp_kv() : nullptr;
auto * inp_attn_k = is_mla ? build_attn_inp_k() : nullptr;
ggml_tensor * inp_out_ids = build_inp_out_ids();
@@ -57,6 +55,9 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
// self_attention
{
ggml_tensor * q = NULL;
const bool is_lite = model.layers[il].wq;
if (!is_lite) {
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
@@ -124,14 +125,14 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
ggml_tensor * Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
@@ -145,7 +146,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
}
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn,
cur = build_attn(inp_attn_k,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
} else {
@@ -169,11 +170,10 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "Vcur_cont", il);
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
ggml_tensor * Qcur = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
ggml_tensor * Kcur = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(Kcur, "Kcur", il);
if (inp_attn_scale) {
@@ -183,7 +183,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
}
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn,
cur = build_attn(inp_attn_kv,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
@@ -215,7 +215,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
hparams.expert_weights_scale, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);

View File

@@ -0,0 +1,146 @@
#include "models.h"
llm_build_exaone_moe::llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn_iswa = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// use RoPE for SWA layers
const bool is_local_layer = hparams.is_swa(il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
if (is_local_layer) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn_iswa,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// norm
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// dense branch
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
// final norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
@@ -12,10 +10,8 @@ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model,
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@@ -19,6 +19,9 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
@@ -43,12 +46,12 @@ llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const ll
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);

View File

@@ -10,10 +10,9 @@ llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_gr
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model),
@@ -15,10 +13,9 @@ llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@@ -248,20 +245,30 @@ ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
auto inp = std::make_unique<llm_graph_input_embd>(n_embd);
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
res->t_inp_tokens = inp->tokens;
inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float) n_embd_altup));
cb(inp_per_layer, "inp_per_layer_selected", -1);
res->add_input(std::move(inp));
} else {
GGML_ABORT("TODO: support embd input");
// Vision embedding path: use padding token (ID=0) embedding
// TODO: verify if this is the correct behavior in transformers implementation
const int64_t embd_size = model.tok_embd_per_layer->ne[0]; // n_embd_altup * n_layer
// Extract and dequantize padding token embedding (row 0)
ggml_tensor * padding = ggml_view_1d(ctx0, model.tok_embd_per_layer, embd_size, 0);
inp_per_layer = ggml_cast(ctx0, padding, GGML_TYPE_F32);
// Reshape to [n_embd_altup, n_layer, 1]
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, 1);
cb(inp_per_layer, "inp_per_layer_vision", -1);
}
res->add_input(std::move(inp));
return inp_per_layer;
}
@@ -279,7 +286,7 @@ ggml_tensor * llm_build_gemma3n_iswa::project_per_layer_inputs(ggml_tensor * inp
-1); // [n_embd_altup, n_layer, n_tokens]
cb(per_layer_proj, "per_layer_proj", -1);
inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
inp_per_layer = ggml_add(ctx0, per_layer_proj, inp_per_layer);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
cb(inp_per_layer, "inp_per_layer", -1);

View File

@@ -25,8 +25,12 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
@@ -67,13 +71,13 @@ llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
} else if (inp_attn_scale) {

View File

@@ -1,6 +1,7 @@
#include "models.h"
llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
template <bool embed>
llm_build_llama<embed>::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@@ -14,7 +15,14 @@ llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_para
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
using inp_attn_type = std::conditional_t<embed, llm_graph_input_attn_no_cache, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (embed) {
inp_attn = build_attn_inp_no_cache();
} else {
inp_attn = build_attn_inp_kv();
}
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
@@ -145,11 +153,16 @@ llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_para
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if constexpr (!embed) {
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
cb(cur, "result_output", -1);
res->t_logits = cur;
}
ggml_build_forward_expand(gf, cur);
}
template struct llm_build_llama<false>;
template struct llm_build_llama<true>;

117
llama/llama.cpp/src/models/maincoder.cpp vendored Normal file
View File

@@ -0,0 +1,117 @@
#include "models.h"
llm_build_maincoder::llm_build_maincoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -0,0 +1,123 @@
#include "models.h"
llm_build_mimo2_iswa::llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
uint32_t n_head_l = hparams.n_head(il);
uint32_t n_head_kv_l = hparams.n_head_kv(il);
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
cur = inpL;
// self_attention
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
ggml_tensor * sinks = model.layers[il].attn_sinks;
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, sinks, nullptr, 1.0f/sqrtf(float(n_embd_head_k)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// dense branch
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false,
0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -9,6 +9,7 @@ llm_build_minicpm3::llm_build_minicpm3(const llama_model & model, const llm_grap
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;

View File

@@ -167,6 +167,10 @@ struct llm_build_exaone : public llm_graph_context {
llm_build_exaone(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_exaone_moe : public llm_graph_context {
llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
@@ -303,6 +307,7 @@ struct llm_build_llada_moe : public llm_graph_context {
llm_build_llada_moe(const llama_model & model, const llm_graph_params & params);
};
template <bool embed>
struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params);
};
@@ -311,10 +316,18 @@ struct llm_build_llama_iswa : public llm_graph_context {
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_maincoder : public llm_graph_context {
llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mimo2_iswa : public llm_graph_context {
llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_minicpm3 : public llm_graph_context {
llm_build_minicpm3(const llama_model & model, const llm_graph_params & params);
};
@@ -327,6 +340,10 @@ struct llm_build_mistral3 : public llm_graph_context {
llm_build_mistral3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_modern_bert : public llm_graph_context {
llm_build_modern_bert(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mpt : public llm_graph_context {
llm_build_mpt(const llama_model & model, const llm_graph_params & params);
};
@@ -396,6 +413,11 @@ struct llm_build_plamo : public llm_graph_context {
llm_build_plamo(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_plamo3 : public llm_graph_context {
llm_build_plamo3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plm : public llm_graph_context {
llm_build_plm(const llama_model & model, const llm_graph_params & params);
};
@@ -448,7 +470,8 @@ private:
ggml_tensor * cur,
int il);
ggml_tensor * build_delta_net_chunking(
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
@@ -460,7 +483,8 @@ private:
ggml_tensor * diag_mask,
int il);
ggml_tensor * build_delta_net_autoregressive(
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
@@ -475,6 +499,11 @@ private:
ggml_tensor * gate,
int layer);
// returns pair of qkv, z
std::pair<ggml_tensor *, ggml_tensor *> build_qkvz(
ggml_tensor * input,
int il);
const llama_model & model;
};

View File

@@ -0,0 +1,116 @@
#include "models.h"
llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inp_pos = build_inp_pos();
// construct input embeddings (token, type, position)
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "inp_embd", -1);
// embed layer norm
inpL = build_norm(inpL, model.tok_norm, nullptr, LLM_NORM, -1);
cb(inpL, "inp_norm", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
auto * inp_attn = build_attn_inp_no_cache();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
cur = inpL;
// attention layer norm
if (model.layers[il].attn_norm) {
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM, il);
cb(cur, "attn_norm", il);
}
// self attention
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
const size_t type_size = ggml_type_size(cur->type);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*type_size, cur->nb[1], 0*type_size*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd + n_embd_gqa));
// RoPE
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// re-add the layer input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// attention layer norm
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GEGLU, LLM_FFN_SEQ, il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM, -1);
cb(cur, "final_norm_out", -1);
if (hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
// extracting cls token
cur = ggml_view_1d(ctx0, cur, hparams.n_embd, 0);
cb(cur, "cls_pooled_embd", -1);
}
cb(cur, "res_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -67,7 +67,7 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
// compute Q and K
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {

View File

@@ -14,6 +14,9 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * inpSA = inpL;
// norm
@@ -49,13 +52,13 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);

Some files were not shown because too many files have changed in this diff Show More