mirror of
https://github.com/ollama/ollama.git
synced 2026-01-29 07:12:03 +03:00
143 lines
2.8 KiB
Plaintext
143 lines
2.8 KiB
Plaintext
---
|
|
title: Quickstart
|
|
---
|
|
|
|
This quickstart will walk your through running your first model with Ollama. To get started, download Ollama on macOS, Windows or Linux.
|
|
|
|
<a
|
|
href="https://ollama.com/download"
|
|
target="_blank"
|
|
className="inline-block px-6 py-2 bg-black rounded-full dark:bg-neutral-700 text-white font-normal border-none"
|
|
>
|
|
Download Ollama
|
|
</a>
|
|
|
|
## Run a model
|
|
|
|
<Tabs>
|
|
<Tab title="CLI">
|
|
Open a terminal and run the command:
|
|
|
|
```sh
|
|
ollama run gemma3
|
|
```
|
|
|
|
</Tab>
|
|
<Tab title="cURL">
|
|
```sh
|
|
ollama pull gemma3
|
|
```
|
|
|
|
Lastly, chat with the model:
|
|
|
|
```shell
|
|
curl http://localhost:11434/api/chat -d '{
|
|
"model": "gemma3",
|
|
"messages": [{
|
|
"role": "user",
|
|
"content": "Hello there!"
|
|
}],
|
|
"stream": false
|
|
}'
|
|
```
|
|
|
|
</Tab>
|
|
<Tab title="Python">
|
|
Start by downloading a model:
|
|
|
|
```sh
|
|
ollama pull gemma3
|
|
```
|
|
|
|
Then install Ollama's Python library:
|
|
|
|
```sh
|
|
pip install ollama
|
|
```
|
|
|
|
Lastly, chat with the model:
|
|
|
|
```python
|
|
from ollama import chat
|
|
from ollama import ChatResponse
|
|
|
|
response: ChatResponse = chat(model='gemma3', messages=[
|
|
{
|
|
'role': 'user',
|
|
'content': 'Why is the sky blue?',
|
|
},
|
|
])
|
|
print(response['message']['content'])
|
|
# or access fields directly from the response object
|
|
print(response.message.content)
|
|
```
|
|
|
|
</Tab>
|
|
<Tab title="JavaScript">
|
|
Start by downloading a model:
|
|
|
|
```
|
|
ollama pull gemma3
|
|
```
|
|
|
|
Then install the Ollama JavaScript library:
|
|
```
|
|
npm i ollama
|
|
```
|
|
|
|
Lastly, chat with the model:
|
|
|
|
```shell
|
|
import ollama from 'ollama'
|
|
|
|
const response = await ollama.chat({
|
|
model: 'gemma3',
|
|
messages: [{ role: 'user', content: 'Why is the sky blue?' }],
|
|
})
|
|
console.log(response.message.content)
|
|
```
|
|
|
|
</Tab>
|
|
</Tabs>
|
|
|
|
See a full list of available models [here](https://ollama.com/models).
|
|
|
|
## Coding
|
|
|
|
For coding use cases, we recommend using the `glm-4.7-flash` model.
|
|
|
|
Note: this model requires 23 GB of VRAM with 64000 tokens context length.
|
|
```sh
|
|
ollama pull glm-4.7-flash
|
|
```
|
|
|
|
Alternatively, you can use a more powerful cloud model (with full context length):
|
|
```sh
|
|
ollama pull glm-4.7:cloud
|
|
```
|
|
|
|
Use `ollama launch` to quickly set up a coding tool with Ollama models:
|
|
|
|
```sh
|
|
ollama launch
|
|
```
|
|
|
|
### Supported integrations
|
|
|
|
- [OpenCode](/integrations/opencode) - Open-source coding assistant
|
|
- [Claude Code](/integrations/claude-code) - Anthropic's agentic coding tool
|
|
- [Codex](/integrations/codex) - OpenAI's coding assistant
|
|
- [Droid](/integrations/droid) - Factory's AI coding agent
|
|
|
|
### Launch with a specific model
|
|
|
|
```sh
|
|
ollama launch claude --model glm-4.7-flash
|
|
```
|
|
|
|
### Configure without launching
|
|
|
|
```sh
|
|
ollama launch claude --config
|
|
```
|