Files
ollama/x/create/create.go
Patrick Devine a077d996e3 Fix create and show commands for experimental models (#13741)
* x: make `ollama create --experimental` import from safetensors

This change allows pulling in safetensors models into the new experimental model format, and also
fixes the `ollama show` command to be able to correctly display the model information.

* gofumpt the linter

* gofumpt the linter again

* validate the model name
2026-01-16 14:31:55 -08:00

400 lines
11 KiB
Go

package create
import (
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// ModelConfig represents the config blob stored with a model.
type ModelConfig struct {
ModelFormat string `json:"model_format"`
Capabilities []string `json:"capabilities"`
}
// Manifest represents the manifest JSON structure.
type Manifest struct {
SchemaVersion int `json:"schemaVersion"`
MediaType string `json:"mediaType"`
Config ManifestLayer `json:"config"`
Layers []ManifestLayer `json:"layers"`
}
// ManifestLayer represents a layer in the manifest.
type ManifestLayer struct {
MediaType string `json:"mediaType"`
Digest string `json:"digest"`
Size int64 `json:"size"`
Name string `json:"name,omitempty"`
}
// defaultManifestDir returns the manifest storage directory.
func defaultManifestDir() string {
return filepath.Join(envconfig.Models(), "manifests")
}
// defaultBlobDir returns the blob storage directory.
func defaultBlobDir() string {
return filepath.Join(envconfig.Models(), "blobs")
}
// resolveManifestPath converts a model name to a manifest file path.
func resolveManifestPath(modelName string) string {
host := "registry.ollama.ai"
namespace := "library"
name := modelName
tag := "latest"
if idx := strings.LastIndex(name, ":"); idx != -1 {
tag = name[idx+1:]
name = name[:idx]
}
parts := strings.Split(name, "/")
switch len(parts) {
case 3:
host = parts[0]
namespace = parts[1]
name = parts[2]
case 2:
namespace = parts[0]
name = parts[1]
}
return filepath.Join(defaultManifestDir(), host, namespace, name, tag)
}
// loadManifest loads a manifest for the given model name.
func loadManifest(modelName string) (*Manifest, error) {
manifestPath := resolveManifestPath(modelName)
data, err := os.ReadFile(manifestPath)
if err != nil {
return nil, err
}
var manifest Manifest
if err := json.Unmarshal(data, &manifest); err != nil {
return nil, err
}
return &manifest, nil
}
// loadModelConfig loads the config blob for a model.
func loadModelConfig(modelName string) (*ModelConfig, error) {
manifest, err := loadManifest(modelName)
if err != nil {
return nil, err
}
// Read the config blob
blobName := strings.Replace(manifest.Config.Digest, ":", "-", 1)
blobPath := filepath.Join(defaultBlobDir(), blobName)
data, err := os.ReadFile(blobPath)
if err != nil {
return nil, err
}
var config ModelConfig
if err := json.Unmarshal(data, &config); err != nil {
return nil, err
}
return &config, nil
}
// IsSafetensorsModel checks if a model was created with the experimental
// safetensors builder by checking the model format in the config.
func IsSafetensorsModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors"
}
// IsSafetensorsLLMModel checks if a model is a safetensors LLM model
// (has completion capability, not image generation).
func IsSafetensorsLLMModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "completion")
}
// IsImageGenModel checks if a model is an image generation model
// (has image capability).
func IsImageGenModel(modelName string) bool {
config, err := loadModelConfig(modelName)
if err != nil {
return false
}
return config.ModelFormat == "safetensors" && slices.Contains(config.Capabilities, "image")
}
// GetModelArchitecture returns the architecture from the model's config.json layer.
func GetModelArchitecture(modelName string) (string, error) {
manifest, err := loadManifest(modelName)
if err != nil {
return "", err
}
// Find the config.json layer
for _, layer := range manifest.Layers {
if layer.Name == "config.json" && layer.MediaType == "application/vnd.ollama.image.json" {
blobName := strings.Replace(layer.Digest, ":", "-", 1)
blobPath := filepath.Join(defaultBlobDir(), blobName)
data, err := os.ReadFile(blobPath)
if err != nil {
return "", err
}
var cfg struct {
Architectures []string `json:"architectures"`
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return "", err
}
// Prefer model_type, fall back to first architecture
if cfg.ModelType != "" {
return cfg.ModelType, nil
}
if len(cfg.Architectures) > 0 {
return cfg.Architectures[0], nil
}
}
}
return "", fmt.Errorf("architecture not found in model config")
}
// IsTensorModelDir checks if the directory contains a diffusers-style tensor model
// by looking for model_index.json, which is the standard diffusers pipeline config.
func IsTensorModelDir(dir string) bool {
_, err := os.Stat(filepath.Join(dir, "model_index.json"))
return err == nil
}
// IsSafetensorsModelDir checks if the directory contains a standard safetensors model
// by looking for config.json and at least one .safetensors file.
func IsSafetensorsModelDir(dir string) bool {
// Must have config.json
if _, err := os.Stat(filepath.Join(dir, "config.json")); err != nil {
return false
}
// Must have at least one .safetensors file
entries, err := os.ReadDir(dir)
if err != nil {
return false
}
for _, entry := range entries {
if strings.HasSuffix(entry.Name(), ".safetensors") {
return true
}
}
return false
}
// LayerInfo holds metadata for a created layer.
type LayerInfo struct {
Digest string
Size int64
MediaType string
Name string // Path-style name: "component/tensor" or "path/to/config.json"
}
// LayerCreator is called to create a blob layer.
// name is the path-style name (e.g., "tokenizer/tokenizer.json")
type LayerCreator func(r io.Reader, mediaType, name string) (LayerInfo, error)
// TensorLayerCreator creates a tensor blob layer with metadata.
// name is the path-style name including component (e.g., "text_encoder/model.embed_tokens.weight")
type TensorLayerCreator func(r io.Reader, name, dtype string, shape []int32) (LayerInfo, error)
// QuantizingTensorLayerCreator creates tensor layers with optional quantization.
// When quantize is non-empty (e.g., "fp8"), returns multiple layers (weight + scales + biases).
type QuantizingTensorLayerCreator func(r io.Reader, name, dtype string, shape []int32, quantize string) ([]LayerInfo, error)
// ManifestWriter writes the manifest file.
type ManifestWriter func(modelName string, config LayerInfo, layers []LayerInfo) error
// ShouldQuantize returns true if a tensor should be quantized.
// For image gen models (component non-empty): quantizes linear weights, skipping VAE, embeddings, norms.
// For LLM models (component empty): quantizes linear weights, skipping embeddings, norms, and small tensors.
func ShouldQuantize(name, component string) bool {
// Image gen specific: skip VAE entirely
if component == "vae" {
return false
}
// Skip embeddings
if strings.Contains(name, "embed") {
return false
}
// Skip layer norms and RMS norms
if strings.Contains(name, "norm") || strings.Contains(name, "ln_") || strings.Contains(name, "layernorm") {
return false
}
// Skip biases
if strings.HasSuffix(name, ".bias") {
return false
}
// Only quantize weights
return strings.HasSuffix(name, ".weight")
}
// ShouldQuantizeTensor returns true if a tensor should be quantized based on name and shape.
// This is a more detailed check that also considers tensor dimensions.
func ShouldQuantizeTensor(name string, shape []int32) bool {
// Use basic name-based check first
if !ShouldQuantize(name, "") {
return false
}
// Only quantize 2D tensors (linear layers) - skip 1D (biases, norms) and higher-D (convolutions if any)
if len(shape) != 2 {
return false
}
// Skip small tensors (less than 1024 elements) - not worth quantizing
if len(shape) >= 2 && int64(shape[0])*int64(shape[1]) < 1024 {
return false
}
// MLX quantization requires last dimension to be divisible by group size (32)
if shape[len(shape)-1]%32 != 0 {
return false
}
return true
}
// CreateSafetensorsModel imports a standard safetensors model from a directory.
// This handles Hugging Face style models with config.json and *.safetensors files.
// Stores each tensor as a separate blob for fine-grained deduplication.
// If quantize is non-empty (e.g., "fp8"), eligible tensors will be quantized.
func CreateSafetensorsModel(modelName, modelDir, quantize string, createLayer LayerCreator, createTensorLayer QuantizingTensorLayerCreator, writeManifest ManifestWriter, fn func(status string)) error {
var layers []LayerInfo
var configLayer LayerInfo
entries, err := os.ReadDir(modelDir)
if err != nil {
return fmt.Errorf("failed to read directory: %w", err)
}
// Process all safetensors files
for _, entry := range entries {
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".safetensors") {
continue
}
stPath := filepath.Join(modelDir, entry.Name())
// Extract individual tensors from safetensors file
extractor, err := safetensors.OpenForExtraction(stPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", stPath, err)
}
tensorNames := extractor.ListTensors()
quantizeMsg := ""
if quantize != "" {
quantizeMsg = fmt.Sprintf(", quantizing to %s", quantize)
}
fn(fmt.Sprintf("importing %s (%d tensors%s)", entry.Name(), len(tensorNames), quantizeMsg))
for _, tensorName := range tensorNames {
td, err := extractor.GetTensor(tensorName)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to get tensor %s: %w", tensorName, err)
}
// Determine quantization type for this tensor (empty string if not quantizing)
quantizeType := ""
if quantize != "" && ShouldQuantizeTensor(tensorName, td.Shape) {
quantizeType = quantize
}
// Store as minimal safetensors format (88 bytes header overhead)
// This enables native mmap loading via mlx_load_safetensors
// createTensorLayer returns multiple layers if quantizing (weight + scales)
newLayers, err := createTensorLayer(td.SafetensorsReader(), tensorName, td.Dtype, td.Shape, quantizeType)
if err != nil {
extractor.Close()
return fmt.Errorf("failed to create layer for %s: %w", tensorName, err)
}
layers = append(layers, newLayers...)
}
extractor.Close()
}
// Process all JSON config files
for _, entry := range entries {
if entry.IsDir() || !strings.HasSuffix(entry.Name(), ".json") {
continue
}
// Skip the index file as we don't need it after extraction
if entry.Name() == "model.safetensors.index.json" {
continue
}
cfgPath := entry.Name()
fullPath := filepath.Join(modelDir, cfgPath)
fn(fmt.Sprintf("importing config %s", cfgPath))
f, err := os.Open(fullPath)
if err != nil {
return fmt.Errorf("failed to open %s: %w", cfgPath, err)
}
layer, err := createLayer(f, "application/vnd.ollama.image.json", cfgPath)
f.Close()
if err != nil {
return fmt.Errorf("failed to create layer for %s: %w", cfgPath, err)
}
// Use config.json as the config layer
if cfgPath == "config.json" {
configLayer = layer
}
layers = append(layers, layer)
}
if configLayer.Digest == "" {
return fmt.Errorf("config.json not found in %s", modelDir)
}
fn(fmt.Sprintf("writing manifest for %s", modelName))
if err := writeManifest(modelName, configLayer, layers); err != nil {
return fmt.Errorf("failed to write manifest: %w", err)
}
fn(fmt.Sprintf("successfully imported %s with %d layers", modelName, len(layers)))
return nil
}