Files
ollama/model/models/lfm2/cache_test.go

445 lines
11 KiB
Go

package lfm2
import (
"testing"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
)
// TestHybridCache tests verify the slot management logic of HybridCache.
// These tests focus on the recurrent state slot allocation, reference counting,
// and copy-on-write semantics without requiring a full ML backend.
// createSlotOnlyCache creates a HybridCache with only the slot management
// fields initialized. Used to test slot logic in isolation.
func createSlotOnlyCache(maxSequences int) *HybridCache {
return &HybridCache{
hiddenSize: 256,
dConv: 3,
maxSequences: maxSequences,
refCount: make([]int, maxSequences),
freeSlots: initFreeSlots(maxSequences),
slotForSeq: make(map[int]int),
convCtxs: make(map[int]ml.Context),
convStates: make(map[int]ml.Tensor),
}
}
func initFreeSlots(n int) []int {
slots := make([]int, 0, n)
for i := n - 1; i >= 0; i-- {
slots = append(slots, i)
}
return slots
}
func TestHybridCache_SlotAllocation(t *testing.T) {
cache := createSlotOnlyCache(4)
// Verify initial state
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots, got %d", len(cache.freeSlots))
}
// Allocate all slots
for range 4 {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.refCount[slot] = 1
}
// Should be full now
if len(cache.freeSlots) != 0 {
t.Errorf("expected 0 free slots, got %d", len(cache.freeSlots))
}
// Trying to allocate another should fail
_, err := cache.allocSlot()
if err != kvcache.ErrKvCacheFull {
t.Errorf("expected ErrKvCacheFull, got %v", err)
}
}
func TestHybridCache_SlotReuse(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate a slot
slot1, _ := cache.allocSlot()
cache.refCount[slot1] = 1
// Free it
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
// Allocate again - should get the same slot back (LIFO)
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected slot %d to be reused, got %d", slot1, slot2)
}
}
func TestHybridCache_SlotRefCounting_ShareSlot(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Simulate sharing slot with seq 2 (copy-on-write style)
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Should share the same slot
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Ref count should be 2
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotRefCounting_DecRef(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share with seq 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Unshare seq 2
cache.refCount[slot1]--
delete(cache.slotForSeq, 2)
// Ref count should be back to 1
if cache.refCount[slot1] != 1 {
t.Errorf("expected refCount 1 after unshare, got %d", cache.refCount[slot1])
}
// Seq 2 should no longer have a slot
if _, ok := cache.slotForSeq[2]; ok {
t.Error("seq 2 should not have a slot after unshare")
}
}
func TestHybridCache_SlotFreeWhenUnused(t *testing.T) {
cache := createSlotOnlyCache(4)
initialFreeSlots := len(cache.freeSlots)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot when refCount drops to 0
cache.refCount[slot1]--
if cache.refCount[slot1] <= 0 {
cache.refCount[slot1] = 0
cache.freeSlot(slot1)
}
delete(cache.slotForSeq, 1)
// Slot should be freed
if len(cache.freeSlots) != initialFreeSlots {
t.Errorf("expected %d free slots, got %d", initialFreeSlots, len(cache.freeSlots))
}
// Ref count should be 0
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_SlotOverwrite(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slots for seq 1 and seq 2
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
slot2, _ := cache.allocSlot()
cache.slotForSeq[2] = slot2
cache.refCount[slot2] = 1
initialFreeSlots := len(cache.freeSlots)
// Simulate overwriting seq 2's slot with slot1 (sharing)
// First free the old slot
cache.refCount[slot2]--
if cache.refCount[slot2] <= 0 {
cache.refCount[slot2] = 0
cache.freeSlot(slot2)
}
// Then share slot1
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Seq 2 should now share slot1
if cache.slotForSeq[2] != slot1 {
t.Errorf("expected seq 2 to share slot %d, got %d", slot1, cache.slotForSeq[2])
}
// Old slot2 should be freed
if len(cache.freeSlots) != initialFreeSlots+1 {
t.Errorf("expected %d free slots, got %d", initialFreeSlots+1, len(cache.freeSlots))
}
}
func TestHybridCache_BoundsChecking(t *testing.T) {
cache := createSlotOnlyCache(4)
// Test freeing invalid slot (should not panic)
cache.freeSlot(-1)
cache.freeSlot(100) // out of bounds
// freeSlot does bounds checking, so invalid slots should be ignored
if len(cache.freeSlots) != 4 {
t.Errorf("invalid slots should not affect free list, got %d slots", len(cache.freeSlots))
}
}
func TestHybridCache_MultipleSequences_RefCounting(t *testing.T) {
cache := createSlotOnlyCache(8)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Fork to seq 2, 3, 4 (all share slot1)
for _, seq := range []int{2, 3, 4} {
cache.slotForSeq[seq] = slot1
cache.refCount[slot1]++
}
// Ref count should be 4
if cache.refCount[slot1] != 4 {
t.Errorf("expected refCount 4, got %d", cache.refCount[slot1])
}
// Remove seq 2, 3
for _, seq := range []int{2, 3} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 2 {
t.Errorf("expected refCount 2, got %d", cache.refCount[slot1])
}
// Slot should still be allocated (not in free list)
found := false
for _, s := range cache.freeSlots {
if s == slot1 {
found = true
break
}
}
if found {
t.Error("slot1 should not be in free list yet")
}
// Remove remaining sequences
for _, seq := range []int{1, 4} {
delete(cache.slotForSeq, seq)
cache.refCount[slot1]--
}
if cache.refCount[slot1] != 0 {
t.Errorf("expected refCount 0, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_ChainedSharing(t *testing.T) {
cache := createSlotOnlyCache(8)
// Create seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Share 1 -> 2
cache.slotForSeq[2] = slot1
cache.refCount[slot1]++
// Share 2 -> 3 (should still share slot1)
cache.slotForSeq[3] = cache.slotForSeq[2] // which is slot1
cache.refCount[slot1]++
// All should share slot1
if cache.slotForSeq[1] != slot1 || cache.slotForSeq[2] != slot1 || cache.slotForSeq[3] != slot1 {
t.Error("all sequences should share slot1")
}
if cache.refCount[slot1] != 3 {
t.Errorf("expected refCount 3, got %d", cache.refCount[slot1])
}
}
func TestHybridCache_CacheParameters(t *testing.T) {
cache := NewHybridCache(nil, 512, 5) // hiddenSize=512, dConv=5
if cache.hiddenSize != 512 {
t.Errorf("expected hiddenSize 512, got %d", cache.hiddenSize)
}
if cache.dConv != 5 {
t.Errorf("expected dConv 5, got %d", cache.dConv)
}
}
func TestHybridCache_NumSeqs(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially no sequences
if cache.numSeqs() != 0 {
t.Errorf("expected 0 seqs, got %d", cache.numSeqs())
}
// Manually set up current batch state
cache.curSeqs = []int{1, 2, 3}
if cache.numSeqs() != 3 {
t.Errorf("expected 3 seqs, got %d", cache.numSeqs())
}
}
func TestHybridCache_SeqTokens(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially 0
if cache.seqTokens() != 0 {
t.Errorf("expected 0 seqTokens, got %d", cache.seqTokens())
}
// Manually set up current batch state
cache.curSeqTokens = 16
if cache.seqTokens() != 16 {
t.Errorf("expected 16 seqTokens, got %d", cache.seqTokens())
}
}
// Test that Seqs returns a clone of curSeqs
func TestHybridCache_Seqs_ReturnsClone(t *testing.T) {
cache := createSlotOnlyCache(4)
cache.curSeqs = []int{1, 2, 3}
seqs := cache.Seqs()
// Modify returned slice
seqs[0] = 999
// Original should be unchanged
if cache.curSeqs[0] != 1 {
t.Error("Seqs should return a clone, not the original slice")
}
}
func TestHybridCache_IsSupportedForBatch(t *testing.T) {
cache := createSlotOnlyCache(4)
// Initially not supported (no batch set up)
if cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be false initially")
}
// Set up a valid batch
cache.curSeqTokens = 1
cache.curSeqs = []int{1}
if !cache.IsSupportedForBatch() {
t.Error("expected IsSupportedForBatch to be true with valid batch")
}
}
func TestHybridCache_ZeroConvSlots_EmptyInputs(t *testing.T) {
cache := createSlotOnlyCache(4)
// zeroConvSlots should handle empty slots without panicking
cache.zeroConvSlots(nil, nil)
cache.zeroConvSlots(nil, []int{})
// zeroConvSlots should handle empty convStates without panicking
cache.zeroConvSlots(nil, []int{0, 1, 2})
}
func TestHybridCache_SlotRecycling_TracksNewSlots(t *testing.T) {
cache := createSlotOnlyCache(4)
// Allocate slot for seq 1
slot1, _ := cache.allocSlot()
cache.slotForSeq[1] = slot1
cache.refCount[slot1] = 1
// Free the slot (simulating sequence removal)
cache.refCount[slot1]--
cache.freeSlot(slot1)
delete(cache.slotForSeq, 1)
// Verify slot is in free list
if len(cache.freeSlots) != 4 {
t.Errorf("expected 4 free slots after freeing, got %d", len(cache.freeSlots))
}
// Allocate for new seq 2 - should get recycled slot
slot2, _ := cache.allocSlot()
if slot2 != slot1 {
t.Errorf("expected recycled slot %d, got %d", slot1, slot2)
}
// This recycled slot would need zeroing in the real implementation
// The actual zeroing is tested via integration tests since it requires ML context
}
func TestHybridCache_NewSequence_GetsTrackedForZeroing(t *testing.T) {
cache := createSlotOnlyCache(4)
// Simulate the slot allocation flow from StartForward
// When a sequence doesn't have a slot, it gets allocated and tracked as "new"
newSlots := []int{}
// Seq 1 doesn't have a slot - allocate and track
seq := 1
if _, ok := cache.slotForSeq[seq]; !ok {
slot, err := cache.allocSlot()
if err != nil {
t.Fatalf("allocSlot failed: %v", err)
}
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots = append(newSlots, slot)
}
// Verify newSlots contains the allocated slot
if len(newSlots) != 1 {
t.Errorf("expected 1 new slot, got %d", len(newSlots))
}
// Seq 1 already has a slot - should NOT be tracked as new
newSlots2 := []int{}
if _, ok := cache.slotForSeq[seq]; !ok {
slot, _ := cache.allocSlot()
cache.slotForSeq[seq] = slot
cache.refCount[slot] = 1
newSlots2 = append(newSlots2, slot)
}
// Verify no new slots for existing sequence
if len(newSlots2) != 0 {
t.Errorf("expected 0 new slots for existing sequence, got %d", len(newSlots2))
}
}