mirror of
https://github.com/ollama/ollama.git
synced 2026-01-29 07:12:03 +03:00
254 lines
7.5 KiB
Go
254 lines
7.5 KiB
Go
package lfm2
|
|
|
|
import (
|
|
"cmp"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize int
|
|
headDim, ropeDim int
|
|
|
|
eps, ropeBase, ropeScale float32
|
|
|
|
ropeType string
|
|
originalContextLength int
|
|
|
|
// per-layer head counts (LFM2 alternates attention and recurrent layers)
|
|
numHeadsByLayer []int
|
|
numKVHeadsByLayer []int
|
|
}
|
|
|
|
func (o Options) headDimValue() int {
|
|
// Head dim is shared across layers; fall back to first attention layer head count.
|
|
for _, h := range o.numHeadsByLayer {
|
|
if h > 0 {
|
|
return cmp.Or(o.headDim, o.hiddenSize/h)
|
|
}
|
|
}
|
|
return cmp.Or(o.headDim, o.hiddenSize)
|
|
}
|
|
|
|
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
|
opts := []func(*rope.Options){rope.WithTypeNeoX()}
|
|
if o.ropeType == "yarn" {
|
|
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
|
|
opts = append(opts,
|
|
rope.WithOriginalContextLength(o.originalContextLength),
|
|
rope.WithExtrapolationFactor(1.),
|
|
rope.WithAttentionFactor(attnFactor),
|
|
)
|
|
}
|
|
|
|
headCount := 1
|
|
for _, h := range o.numHeadsByLayer {
|
|
if h > 0 {
|
|
headCount = h
|
|
break
|
|
}
|
|
}
|
|
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/headCount), o.ropeBase, 1./o.ropeScale, opts...)
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.TextProcessor
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
Layers []Layer `gguf:"blk"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm,alt:token_embd_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Options
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
if c.Uint("expert_count") > 0 {
|
|
return nil, model.ErrUnsupportedModel
|
|
}
|
|
|
|
if c.String("tokenizer.ggml.model") != "gpt2" {
|
|
return nil, model.ErrUnsupportedTokenizer
|
|
}
|
|
|
|
vocabulary := model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
}
|
|
|
|
var pretokenizers []string
|
|
switch c.String("tokenizer.ggml.pre") {
|
|
case "default":
|
|
// use default BPE pretokenizer
|
|
default:
|
|
// llama-bpe style (default for LFM2)
|
|
pretokenizers = []string{
|
|
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
|
|
}
|
|
}
|
|
|
|
m := Model{
|
|
TextProcessor: model.NewBytePairEncoding(&vocabulary, pretokenizers...),
|
|
Layers: make([]Layer, c.Uint("block_count")),
|
|
Options: Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
headDim: int(c.Uint("attention.key_length")),
|
|
ropeDim: int(c.Uint("rope.dimension_count")),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
ropeType: c.String("rope.scaling.type"),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.scaling.factor", 1),
|
|
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
|
},
|
|
}
|
|
|
|
type headCounts interface {
|
|
HeadCount() []uint64
|
|
HeadCountKV() []uint64
|
|
}
|
|
hc, ok := c.(headCounts)
|
|
if !ok {
|
|
return nil, model.ErrUnsupportedModel
|
|
}
|
|
|
|
headCount := hc.HeadCount()
|
|
headCountKV := hc.HeadCountKV()
|
|
|
|
m.numHeadsByLayer = make([]int, len(m.Layers))
|
|
m.numKVHeadsByLayer = make([]int, len(m.Layers))
|
|
for i := range m.Layers {
|
|
m.numHeadsByLayer[i] = int(headCount[i])
|
|
m.numKVHeadsByLayer[i] = int(headCountKV[i])
|
|
|
|
if m.numKVHeadsByLayer[i] == 0 {
|
|
m.Layers[i].Operator = &ShortConv{}
|
|
} else {
|
|
m.Layers[i].Operator = &Attention{}
|
|
}
|
|
}
|
|
|
|
lCache := int(c.Uint("shortconv.l_cache"))
|
|
dConv := max(0, lCache-1)
|
|
m.Cache = NewHybridCache(m.Shift, m.hiddenSize, dConv)
|
|
return &m, nil
|
|
}
|
|
|
|
type Operator interface {
|
|
Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor
|
|
}
|
|
|
|
type Attention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output,alt:attn_out"`
|
|
}
|
|
|
|
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache *HybridCache, layer int, opts *Options) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
headDim := opts.headDimValue()
|
|
numHeads := opts.numHeadsByLayer[layer]
|
|
numKVHeads := opts.numKVHeadsByLayer[layer]
|
|
|
|
query := sa.Query.Forward(ctx, hiddenStates)
|
|
key := sa.Key.Forward(ctx, hiddenStates)
|
|
value := sa.Value.Forward(ctx, hiddenStates)
|
|
|
|
query = query.Reshape(ctx, headDim, numHeads, batchSize)
|
|
key = key.Reshape(ctx, headDim, numKVHeads, batchSize)
|
|
value = value.Reshape(ctx, headDim, numKVHeads, batchSize)
|
|
|
|
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
|
|
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
|
|
|
|
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
|
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
|
|
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
}
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
return mlp.Down.Forward(ctx, hiddenState)
|
|
}
|
|
|
|
type Layer struct {
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
Operator Operator
|
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
MLP *MLP
|
|
}
|
|
|
|
func (l *Layer) Forward(ctx ml.Context, layer int, hiddenState, positions, outputs ml.Tensor, cache *HybridCache, opts *Options) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = l.Operator.Forward(ctx, hiddenState, positions, cache, layer, opts)
|
|
|
|
if outputs != nil {
|
|
hiddenState = hiddenState.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
return hiddenState.Add(ctx, residual)
|
|
}
|
|
|
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = batch.Outputs
|
|
}
|
|
|
|
hiddenState = layer.Forward(ctx, i, hiddenState, positions, outputs, m.Cache.(*HybridCache), &m.Options)
|
|
}
|
|
|
|
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
return m.Output.Forward(ctx, hiddenState), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("lfm2", New)
|
|
}
|