mirror of
https://github.com/ollama/ollama.git
synced 2026-01-29 07:12:03 +03:00
605 lines
16 KiB
Go
605 lines
16 KiB
Go
package server
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"encoding/json"
|
|
"os"
|
|
"path/filepath"
|
|
"testing"
|
|
|
|
"github.com/ollama/ollama/manifest"
|
|
)
|
|
|
|
func TestBuildModelInfo(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
config modelConfig
|
|
totalTensorBytes int64
|
|
tensorCount int64
|
|
wantArch string
|
|
wantContextLen int
|
|
wantEmbedLen int
|
|
wantBlockCount int
|
|
wantParamCount int64
|
|
}{
|
|
{
|
|
name: "gemma3 model with model_type",
|
|
config: modelConfig{
|
|
ModelType: "gemma3",
|
|
HiddenSize: 2560,
|
|
NumHiddenLayers: 34,
|
|
MaxPositionEmbeddings: 131072,
|
|
IntermediateSize: 10240,
|
|
NumAttentionHeads: 8,
|
|
NumKeyValueHeads: 4,
|
|
VocabSize: 262144,
|
|
TorchDtype: "bfloat16",
|
|
},
|
|
totalTensorBytes: 8_600_000_088, // ~4.3B params * 2 bytes + 88 bytes header
|
|
tensorCount: 1,
|
|
wantArch: "gemma3",
|
|
wantContextLen: 131072,
|
|
wantEmbedLen: 2560,
|
|
wantBlockCount: 34,
|
|
wantParamCount: 4_300_000_000,
|
|
},
|
|
{
|
|
name: "llama model with architectures array",
|
|
config: modelConfig{
|
|
Architectures: []string{"LlamaForCausalLM"},
|
|
HiddenSize: 4096,
|
|
NumHiddenLayers: 32,
|
|
MaxPositionEmbeddings: 4096,
|
|
IntermediateSize: 11008,
|
|
NumAttentionHeads: 32,
|
|
NumKeyValueHeads: 32,
|
|
VocabSize: 32000,
|
|
TorchDtype: "float16",
|
|
},
|
|
totalTensorBytes: 14_000_000_088, // ~7B params * 2 bytes + 88 bytes header
|
|
tensorCount: 1,
|
|
wantArch: "llama",
|
|
wantContextLen: 4096,
|
|
wantEmbedLen: 4096,
|
|
wantBlockCount: 32,
|
|
wantParamCount: 7_000_000_000,
|
|
},
|
|
{
|
|
name: "multimodal model with text_config",
|
|
config: modelConfig{
|
|
Architectures: []string{"Gemma3ForConditionalGeneration"},
|
|
HiddenSize: 1152, // vision hidden size
|
|
TextConfig: &struct {
|
|
HiddenSize int `json:"hidden_size"`
|
|
MaxPositionEmbeddings int `json:"max_position_embeddings"`
|
|
NumHiddenLayers int `json:"num_hidden_layers"`
|
|
}{
|
|
HiddenSize: 2560,
|
|
MaxPositionEmbeddings: 131072,
|
|
NumHiddenLayers: 34,
|
|
},
|
|
NumAttentionHeads: 8,
|
|
NumKeyValueHeads: 4,
|
|
VocabSize: 262144,
|
|
TorchDtype: "bfloat16",
|
|
},
|
|
totalTensorBytes: 8_600_000_088,
|
|
tensorCount: 1,
|
|
wantArch: "gemma3",
|
|
wantContextLen: 131072,
|
|
wantEmbedLen: 2560,
|
|
wantBlockCount: 34,
|
|
wantParamCount: 4_300_000_000,
|
|
},
|
|
{
|
|
name: "float32 model",
|
|
config: modelConfig{
|
|
ModelType: "test",
|
|
HiddenSize: 512,
|
|
NumHiddenLayers: 6,
|
|
MaxPositionEmbeddings: 2048,
|
|
TorchDtype: "float32",
|
|
},
|
|
totalTensorBytes: 400_000_088, // 100M params * 4 bytes + 88 bytes header
|
|
tensorCount: 1,
|
|
wantArch: "test",
|
|
wantContextLen: 2048,
|
|
wantEmbedLen: 512,
|
|
wantBlockCount: 6,
|
|
wantParamCount: 100_000_000,
|
|
},
|
|
{
|
|
name: "multiple tensors with header overhead",
|
|
config: modelConfig{
|
|
ModelType: "test",
|
|
HiddenSize: 256,
|
|
NumHiddenLayers: 4,
|
|
MaxPositionEmbeddings: 1024,
|
|
TorchDtype: "bfloat16",
|
|
},
|
|
totalTensorBytes: 2_000_880, // 1M params * 2 bytes + 10 tensors * 88 bytes
|
|
tensorCount: 10,
|
|
wantArch: "test",
|
|
wantContextLen: 1024,
|
|
wantEmbedLen: 256,
|
|
wantBlockCount: 4,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
info := buildModelInfo(tt.config, tt.totalTensorBytes, tt.tensorCount)
|
|
|
|
// Check architecture
|
|
if arch, ok := info["general.architecture"].(string); !ok || arch != tt.wantArch {
|
|
t.Errorf("architecture = %v, want %v", info["general.architecture"], tt.wantArch)
|
|
}
|
|
|
|
// Check context length
|
|
contextKey := tt.wantArch + ".context_length"
|
|
if contextLen, ok := info[contextKey].(int); !ok || contextLen != tt.wantContextLen {
|
|
t.Errorf("context_length = %v, want %v", info[contextKey], tt.wantContextLen)
|
|
}
|
|
|
|
// Check embedding length
|
|
embedKey := tt.wantArch + ".embedding_length"
|
|
if embedLen, ok := info[embedKey].(int); !ok || embedLen != tt.wantEmbedLen {
|
|
t.Errorf("embedding_length = %v, want %v", info[embedKey], tt.wantEmbedLen)
|
|
}
|
|
|
|
// Check block count
|
|
blockKey := tt.wantArch + ".block_count"
|
|
if blockCount, ok := info[blockKey].(int); !ok || blockCount != tt.wantBlockCount {
|
|
t.Errorf("block_count = %v, want %v", info[blockKey], tt.wantBlockCount)
|
|
}
|
|
|
|
// Check parameter count
|
|
if paramCount, ok := info["general.parameter_count"].(int64); !ok || paramCount != tt.wantParamCount {
|
|
t.Errorf("parameter_count = %v, want %v", info["general.parameter_count"], tt.wantParamCount)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestBuildModelInfo_ArchitectureConversion(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
architectures []string
|
|
modelType string
|
|
wantArch string
|
|
}{
|
|
{
|
|
name: "LlamaForCausalLM",
|
|
architectures: []string{"LlamaForCausalLM"},
|
|
wantArch: "llama",
|
|
},
|
|
{
|
|
name: "Gemma3ForCausalLM",
|
|
architectures: []string{"Gemma3ForCausalLM"},
|
|
wantArch: "gemma3",
|
|
},
|
|
{
|
|
name: "Gemma3ForConditionalGeneration",
|
|
architectures: []string{"Gemma3ForConditionalGeneration"},
|
|
wantArch: "gemma3",
|
|
},
|
|
{
|
|
name: "Qwen2ForCausalLM",
|
|
architectures: []string{"Qwen2ForCausalLM"},
|
|
wantArch: "qwen2",
|
|
},
|
|
{
|
|
name: "model_type takes precedence",
|
|
architectures: []string{"LlamaForCausalLM"},
|
|
modelType: "custom",
|
|
wantArch: "custom",
|
|
},
|
|
{
|
|
name: "empty architectures with model_type",
|
|
architectures: nil,
|
|
modelType: "mymodel",
|
|
wantArch: "mymodel",
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
config := modelConfig{
|
|
Architectures: tt.architectures,
|
|
ModelType: tt.modelType,
|
|
}
|
|
info := buildModelInfo(config, 0, 0)
|
|
|
|
if arch, ok := info["general.architecture"].(string); !ok || arch != tt.wantArch {
|
|
t.Errorf("architecture = %v, want %v", info["general.architecture"], tt.wantArch)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestBuildModelInfo_BytesPerParam(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
dtype string
|
|
totalBytes int64
|
|
tensorCount int64
|
|
wantParamCount int64
|
|
}{
|
|
{
|
|
name: "bfloat16",
|
|
dtype: "bfloat16",
|
|
totalBytes: 2_000_088, // 1M * 2 + 88
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
{
|
|
name: "float16",
|
|
dtype: "float16",
|
|
totalBytes: 2_000_088,
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
{
|
|
name: "float32",
|
|
dtype: "float32",
|
|
totalBytes: 4_000_088, // 1M * 4 + 88
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
{
|
|
name: "int8",
|
|
dtype: "int8",
|
|
totalBytes: 1_000_088, // 1M * 1 + 88
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
{
|
|
name: "unknown dtype defaults to 2 bytes",
|
|
dtype: "unknown",
|
|
totalBytes: 2_000_088,
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
{
|
|
name: "empty dtype defaults to 2 bytes",
|
|
dtype: "",
|
|
totalBytes: 2_000_088,
|
|
tensorCount: 1,
|
|
wantParamCount: 1_000_000,
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
config := modelConfig{
|
|
ModelType: "test",
|
|
TorchDtype: tt.dtype,
|
|
}
|
|
info := buildModelInfo(config, tt.totalBytes, tt.tensorCount)
|
|
|
|
if paramCount, ok := info["general.parameter_count"].(int64); !ok || paramCount != tt.wantParamCount {
|
|
t.Errorf("parameter_count = %v, want %v", info["general.parameter_count"], tt.wantParamCount)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestParseSafetensorsHeader(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
header map[string]any
|
|
wantDtype string
|
|
wantShape []int64
|
|
wantErr bool
|
|
}{
|
|
{
|
|
name: "simple tensor",
|
|
header: map[string]any{
|
|
"weight": map[string]any{
|
|
"dtype": "BF16",
|
|
"shape": []int64{2560, 262144},
|
|
"data_offsets": []int64{0, 1342177280},
|
|
},
|
|
},
|
|
wantDtype: "BF16",
|
|
wantShape: []int64{2560, 262144},
|
|
},
|
|
{
|
|
name: "with metadata",
|
|
header: map[string]any{
|
|
"__metadata__": map[string]any{
|
|
"format": "pt",
|
|
},
|
|
"bias": map[string]any{
|
|
"dtype": "F32",
|
|
"shape": []int64{1024},
|
|
"data_offsets": []int64{0, 4096},
|
|
},
|
|
},
|
|
wantDtype: "F32",
|
|
wantShape: []int64{1024},
|
|
},
|
|
{
|
|
name: "float16 tensor",
|
|
header: map[string]any{
|
|
"layer.weight": map[string]any{
|
|
"dtype": "F16",
|
|
"shape": []int64{512, 512, 3, 3},
|
|
"data_offsets": []int64{0, 4718592},
|
|
},
|
|
},
|
|
wantDtype: "F16",
|
|
wantShape: []int64{512, 512, 3, 3},
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
// Create safetensors format: 8-byte size + JSON header
|
|
headerJSON, err := json.Marshal(tt.header)
|
|
if err != nil {
|
|
t.Fatalf("failed to marshal header: %v", err)
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
if err := binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON))); err != nil {
|
|
t.Fatalf("failed to write header size: %v", err)
|
|
}
|
|
buf.Write(headerJSON)
|
|
|
|
info, err := parseSafetensorsHeader(&buf)
|
|
if (err != nil) != tt.wantErr {
|
|
t.Errorf("parseSafetensorsHeader() error = %v, wantErr %v", err, tt.wantErr)
|
|
return
|
|
}
|
|
if tt.wantErr {
|
|
return
|
|
}
|
|
|
|
if info.Dtype != tt.wantDtype {
|
|
t.Errorf("Dtype = %v, want %v", info.Dtype, tt.wantDtype)
|
|
}
|
|
|
|
if len(info.Shape) != len(tt.wantShape) {
|
|
t.Errorf("Shape length = %v, want %v", len(info.Shape), len(tt.wantShape))
|
|
} else {
|
|
for i, s := range info.Shape {
|
|
if s != tt.wantShape[i] {
|
|
t.Errorf("Shape[%d] = %v, want %v", i, s, tt.wantShape[i])
|
|
}
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestParseSafetensorsHeader_Errors(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
data []byte
|
|
wantErr string
|
|
}{
|
|
{
|
|
name: "empty data",
|
|
data: []byte{},
|
|
wantErr: "failed to read header size",
|
|
},
|
|
{
|
|
name: "truncated header size",
|
|
data: []byte{0x01, 0x02, 0x03},
|
|
wantErr: "failed to read header size",
|
|
},
|
|
{
|
|
name: "header size too large",
|
|
data: func() []byte {
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(2*1024*1024)) // 2MB
|
|
return buf.Bytes()
|
|
}(),
|
|
wantErr: "header size too large",
|
|
},
|
|
{
|
|
name: "truncated header",
|
|
data: func() []byte {
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(100))
|
|
buf.Write([]byte("short"))
|
|
return buf.Bytes()
|
|
}(),
|
|
wantErr: "failed to read header",
|
|
},
|
|
{
|
|
name: "invalid JSON",
|
|
data: func() []byte {
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(10))
|
|
buf.Write([]byte("not json!!"))
|
|
return buf.Bytes()
|
|
}(),
|
|
wantErr: "failed to parse header",
|
|
},
|
|
{
|
|
name: "no tensors in header",
|
|
data: func() []byte {
|
|
header := map[string]any{
|
|
"__metadata__": map[string]any{"format": "pt"},
|
|
}
|
|
headerJSON, _ := json.Marshal(header)
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
|
buf.Write(headerJSON)
|
|
return buf.Bytes()
|
|
}(),
|
|
wantErr: "no tensor found in header",
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
_, err := parseSafetensorsHeader(bytes.NewReader(tt.data))
|
|
if err == nil {
|
|
t.Error("expected error, got nil")
|
|
return
|
|
}
|
|
if !bytes.Contains([]byte(err.Error()), []byte(tt.wantErr)) {
|
|
t.Errorf("error = %v, want error containing %v", err, tt.wantErr)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestGetTensorInfoFromManifest(t *testing.T) {
|
|
// Create a temp directory for blobs and set OLLAMA_MODELS
|
|
tempDir := t.TempDir()
|
|
t.Setenv("OLLAMA_MODELS", tempDir)
|
|
|
|
blobDir := filepath.Join(tempDir, "blobs")
|
|
if err := os.MkdirAll(blobDir, 0o755); err != nil {
|
|
t.Fatalf("failed to create blobs dir: %v", err)
|
|
}
|
|
|
|
// Create test tensor blobs
|
|
tensors := []struct {
|
|
name string
|
|
digest string
|
|
dtype string
|
|
shape []int64
|
|
}{
|
|
{
|
|
name: "model.embed_tokens.weight",
|
|
digest: "sha256:abc123abc123abc123abc123abc123abc123abc123abc123abc123abc123abc0",
|
|
dtype: "BF16",
|
|
shape: []int64{262144, 2560},
|
|
},
|
|
{
|
|
name: "model.layers.0.self_attn.q_proj.weight",
|
|
digest: "sha256:def456def456def456def456def456def456def456def456def456def456def0",
|
|
dtype: "BF16",
|
|
shape: []int64{2560, 2560},
|
|
},
|
|
{
|
|
name: "model.norm.weight",
|
|
digest: "sha256:789789789789789789789789789789789789789789789789789789789789abc0",
|
|
dtype: "F32",
|
|
shape: []int64{2560},
|
|
},
|
|
}
|
|
|
|
// Create blob files
|
|
var layers []manifest.Layer
|
|
for _, tensor := range tensors {
|
|
// Create safetensors blob
|
|
header := map[string]any{
|
|
tensor.name: map[string]any{
|
|
"dtype": tensor.dtype,
|
|
"shape": tensor.shape,
|
|
"data_offsets": []int64{0, 1000},
|
|
},
|
|
}
|
|
headerJSON, _ := json.Marshal(header)
|
|
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
|
buf.Write(headerJSON)
|
|
|
|
// Write blob file using the digest format expected by GetBlobsPath
|
|
blobPath, err := manifest.BlobsPath(tensor.digest)
|
|
if err != nil {
|
|
t.Fatalf("failed to get blob path: %v", err)
|
|
}
|
|
if err := os.WriteFile(blobPath, buf.Bytes(), 0o644); err != nil {
|
|
t.Fatalf("failed to write blob: %v", err)
|
|
}
|
|
|
|
layers = append(layers, manifest.Layer{
|
|
MediaType: manifest.MediaTypeImageTensor,
|
|
Digest: tensor.digest,
|
|
Size: int64(buf.Len() + 1000), // header + fake data
|
|
Name: tensor.name,
|
|
})
|
|
}
|
|
|
|
// Add a non-tensor layer (should be skipped)
|
|
layers = append(layers, manifest.Layer{
|
|
MediaType: "application/vnd.ollama.image.json",
|
|
Digest: "sha256:0000000000000000000000000000000000000000000000000000000000000000",
|
|
Size: 100,
|
|
Name: "config.json",
|
|
})
|
|
|
|
mf := &manifest.Manifest{
|
|
SchemaVersion: 2,
|
|
MediaType: "application/vnd.docker.distribution.manifest.v2+json",
|
|
Layers: layers,
|
|
}
|
|
|
|
result, err := getTensorInfoFromManifest(mf)
|
|
if err != nil {
|
|
t.Fatalf("getTensorInfoFromManifest() error = %v", err)
|
|
}
|
|
|
|
if len(result) != 3 {
|
|
t.Errorf("got %d tensors, want 3", len(result))
|
|
}
|
|
|
|
// Verify each tensor
|
|
for i, tensor := range tensors {
|
|
if i >= len(result) {
|
|
break
|
|
}
|
|
if result[i].Name != tensor.name {
|
|
t.Errorf("tensor[%d].Name = %v, want %v", i, result[i].Name, tensor.name)
|
|
}
|
|
if result[i].Type != tensor.dtype {
|
|
t.Errorf("tensor[%d].Type = %v, want %v", i, result[i].Type, tensor.dtype)
|
|
}
|
|
if len(result[i].Shape) != len(tensor.shape) {
|
|
t.Errorf("tensor[%d].Shape length = %v, want %v", i, len(result[i].Shape), len(tensor.shape))
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestReadSafetensorsHeader(t *testing.T) {
|
|
// Create a temp file with a valid safetensors header
|
|
tempDir := t.TempDir()
|
|
|
|
header := map[string]any{
|
|
"test_tensor": map[string]any{
|
|
"dtype": "BF16",
|
|
"shape": []int64{1024, 768},
|
|
"data_offsets": []int64{0, 1572864},
|
|
},
|
|
}
|
|
headerJSON, _ := json.Marshal(header)
|
|
|
|
var buf bytes.Buffer
|
|
binary.Write(&buf, binary.LittleEndian, uint64(len(headerJSON)))
|
|
buf.Write(headerJSON)
|
|
|
|
filePath := filepath.Join(tempDir, "test.safetensors")
|
|
if err := os.WriteFile(filePath, buf.Bytes(), 0o644); err != nil {
|
|
t.Fatalf("failed to write test file: %v", err)
|
|
}
|
|
|
|
info, err := readSafetensorsHeader(filePath)
|
|
if err != nil {
|
|
t.Fatalf("readSafetensorsHeader() error = %v", err)
|
|
}
|
|
|
|
if info.Dtype != "BF16" {
|
|
t.Errorf("Dtype = %v, want BF16", info.Dtype)
|
|
}
|
|
if len(info.Shape) != 2 || info.Shape[0] != 1024 || info.Shape[1] != 768 {
|
|
t.Errorf("Shape = %v, want [1024, 768]", info.Shape)
|
|
}
|
|
}
|
|
|
|
func TestReadSafetensorsHeader_FileNotFound(t *testing.T) {
|
|
_, err := readSafetensorsHeader("/nonexistent/path/file.safetensors")
|
|
if err == nil {
|
|
t.Error("expected error for nonexistent file")
|
|
}
|
|
}
|