mirror of
https://github.com/ollama/ollama.git
synced 2026-01-29 07:12:03 +03:00
The nvidia_fp32 config for (576, 512) head sizes had nbatch_fa=32, which caused zero-sized arrays when computing array dimensions: nbatch_fa / (np * warp_size) = 32 / (2 * 32) = 0 This resulted in CUDA compilation failures on CUDA 12 (Windows and Linux arm64): - "static assertion failed with nbatch_fa % (np*warp_size) != 0" - "the size of an array must be greater than zero" Fix by changing nbatch_fa from 32 to 64 for all (576, 512) configs in the nvidia_fp32 function, matching the nvidia_fp16 and AMD configs.
265 lines
8.3 KiB
Go
265 lines
8.3 KiB
Go
package convert
|
|
|
|
import (
|
|
"cmp"
|
|
"fmt"
|
|
"log/slog"
|
|
"regexp"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
)
|
|
|
|
type glm4MoeLiteModel struct {
|
|
ModelParameters
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
|
|
RopeTheta float32 `json:"rope_theta"`
|
|
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
|
|
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
|
|
KVLoraRank uint32 `json:"kv_lora_rank"`
|
|
QLoraRank uint32 `json:"q_lora_rank"`
|
|
VHeadDim uint32 `json:"v_head_dim"`
|
|
|
|
ExpertCount uint32 `json:"n_routed_experts"`
|
|
ExpertSharedCount uint32 `json:"n_shared_experts"`
|
|
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
|
|
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
|
|
ExpertWeightsNorm bool `json:"norm_topk_prob"`
|
|
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
|
|
|
|
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
|
|
}
|
|
|
|
func (p *glm4MoeLiteModel) KV(t *Tokenizer) KV {
|
|
kv := p.ModelParameters.KV(t)
|
|
kv["general.architecture"] = "glm4moelite"
|
|
kv["general.type"] = "model"
|
|
kv["glm4moelite.block_count"] = p.HiddenLayers
|
|
|
|
numHeads := p.NumAttentionHeads
|
|
numKVHeads := p.NumKeyValueHeads
|
|
|
|
kv["glm4moelite.attention.head_count"] = numHeads
|
|
kv["glm4moelite.attention.head_count_kv"] = numKVHeads
|
|
kv["glm4moelite.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
|
|
kv["glm4moelite.attention.kv_lora_rank"] = p.KVLoraRank
|
|
kv["glm4moelite.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
kv["glm4moelite.attention.q_lora_rank"] = p.QLoraRank
|
|
kv["glm4moelite.attention.value_length"] = p.VHeadDim
|
|
kv["glm4moelite.context_length"] = p.MaxPositionEmbeddings
|
|
kv["glm4moelite.embedding_length"] = p.HiddenSize
|
|
kv["glm4moelite.expert_count"] = p.ExpertCount
|
|
kv["glm4moelite.expert_feed_forward_length"] = p.ExpertIntermediateSize
|
|
kv["glm4moelite.expert_shared_count"] = p.ExpertSharedCount
|
|
|
|
kv["glm4moelite.expert_gating_func"] = uint32(2)
|
|
kv["glm4moelite.expert_used_count"] = p.ExpertUsedCount
|
|
kv["glm4moelite.expert_weights_norm"] = p.ExpertWeightsNorm
|
|
kv["glm4moelite.expert_weights_scale"] = p.ExpertWeightsScale
|
|
kv["glm4moelite.feed_forward_length"] = p.IntermediateSize
|
|
kv["glm4moelite.leading_dense_block_count"] = p.LeadingDenseBlockCount
|
|
|
|
kv["glm4moelite.rope.dimension_count"] = p.QKRopeHeadDim
|
|
kv["glm4moelite.rope.freq_base"] = cmp.Or(p.RopeTheta, float32(1000000.0))
|
|
|
|
kv["glm4moelite.attention.key_length_mla"] = p.KVLoraRank + p.QKRopeHeadDim
|
|
kv["glm4moelite.attention.value_length_mla"] = p.KVLoraRank
|
|
|
|
kv["tokenizer.ggml.pre"] = "glm4"
|
|
|
|
return kv
|
|
}
|
|
|
|
func (p *glm4MoeLiteModel) Replacements() []string {
|
|
return []string{
|
|
"lm_head", "output",
|
|
"model.embed_tokens", "token_embd",
|
|
"model.norm", "output_norm",
|
|
"model.layers", "blk",
|
|
"input_layernorm", "attn_norm",
|
|
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
|
|
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
|
|
"self_attn.kv_b_proj", "attn_kv_b",
|
|
"self_attn.q_a_proj", "attn_q_a",
|
|
"self_attn.q_a_layernorm", "attn_q_a_norm",
|
|
"self_attn.q_b_proj", "attn_q_b",
|
|
"self_attn.o_proj", "attn_output",
|
|
"post_attention_layernorm", "ffn_norm",
|
|
"mlp.shared_experts.down_proj", "ffn_down_shexp",
|
|
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
|
|
"mlp.shared_experts.up_proj", "ffn_up_shexp",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.up_proj", "ffn_up",
|
|
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
|
|
"mlp.gate", "ffn_gate_inp",
|
|
}
|
|
}
|
|
|
|
// repackKVB extracts K or V from the combined KV_B tensor for MLA absorption.
|
|
// K output row-major: [n_head, kv_lora_rank, qk_nope] -> GGML ne[]={qk_nope, kv_lora_rank, n_head}
|
|
// V output row-major: [n_head, v_head, kv_lora_rank] -> GGML ne[]={kv_lora_rank, v_head, n_head}
|
|
func (p *glm4MoeLiteModel) repackKVB(extractK bool, kvFirst bool, numHeads int) Repacker {
|
|
qkNope := int(p.QKNopeHeadDim)
|
|
vHeadDim := int(p.VHeadDim)
|
|
kvLoraRank := int(p.KVLoraRank)
|
|
kvPerHead := qkNope + vHeadDim
|
|
|
|
return func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
|
dims := make([]int, len(shape))
|
|
for i := range shape {
|
|
dims[i] = int(shape[i])
|
|
}
|
|
|
|
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
var err error
|
|
|
|
// Normalize to [n_head * (qk_nope + v_head), kv_lora_rank] layout
|
|
if kvFirst {
|
|
tt, err = tensor.Transpose(tt, 1, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tt = tensor.Materialize(tt)
|
|
}
|
|
|
|
// Reshape to [n_head, qk_nope + v_head, kv_lora_rank]
|
|
if err := tt.Reshape(numHeads, kvPerHead, kvLoraRank); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if extractK {
|
|
// Slice K: [n_head, qk_nope, kv_lora_rank]
|
|
tt, err = tt.Slice(nil, tensor.S(0, qkNope), nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tt = tensor.Materialize(tt)
|
|
// Transpose to [n_head, kv_lora_rank, qk_nope]
|
|
tt, err = tensor.Transpose(tt, 0, 2, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tt = tensor.Materialize(tt)
|
|
} else {
|
|
// Slice V: [n_head, v_head, kv_lora_rank] - already correct layout
|
|
tt, err = tt.Slice(nil, tensor.S(qkNope, kvPerHead), nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tt = tensor.Materialize(tt)
|
|
}
|
|
|
|
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
|
return nil, err
|
|
}
|
|
return native.VectorF32(tt.(*tensor.Dense))
|
|
}
|
|
}
|
|
|
|
func (p *glm4MoeLiteModel) Tensors(s []Tensor) (out []*ggml.Tensor) {
|
|
merges := make([]merge, p.HiddenLayers*3)
|
|
for i := range p.HiddenLayers {
|
|
merges[i*3+0] = merge{
|
|
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
|
|
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
|
|
}
|
|
merges[i*3+1] = merge{
|
|
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
|
|
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
|
|
}
|
|
merges[i*3+2] = merge{
|
|
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
|
|
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
|
|
}
|
|
}
|
|
|
|
skipLayer := func(n string, minValue uint32) bool {
|
|
re := regexp.MustCompile(`^blk\.(\d+)`)
|
|
matches := re.FindStringSubmatch(n)
|
|
if matches == nil {
|
|
return false
|
|
}
|
|
|
|
blkNum, err := strconv.Atoi(matches[1])
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
return uint32(blkNum) >= minValue
|
|
}
|
|
|
|
out, s = mergeTensors(s, merges...)
|
|
for _, t := range s {
|
|
// skip any additional layers (such as the Multi-Token Prediction layer)
|
|
if skipLayer(t.Name(), p.HiddenLayers) {
|
|
slog.Debug("skipping layer", "name", t.Name())
|
|
continue
|
|
}
|
|
|
|
// Split attn_kv_b into separate attn_k_b and attn_v_b for MLA absorption
|
|
if strings.HasSuffix(t.Name(), ".attn_kv_b.weight") {
|
|
qkNope := int(p.QKNopeHeadDim)
|
|
vHeadDim := int(p.VHeadDim)
|
|
kvLoraRank := int(p.KVLoraRank)
|
|
kvPerHead := qkNope + vHeadDim
|
|
numHeads := int(p.NumAttentionHeads)
|
|
kvFirst := true
|
|
if len(t.Shape()) == 2 {
|
|
switch {
|
|
case int(t.Shape()[0]) == kvLoraRank:
|
|
if kvPerHead > 0 && int(t.Shape()[1])%kvPerHead == 0 {
|
|
numHeads = int(t.Shape()[1]) / kvPerHead
|
|
}
|
|
kvFirst = true
|
|
case int(t.Shape()[1]) == kvLoraRank:
|
|
if kvPerHead > 0 && int(t.Shape()[0])%kvPerHead == 0 {
|
|
numHeads = int(t.Shape()[0]) / kvPerHead
|
|
}
|
|
kvFirst = false
|
|
default:
|
|
slog.Warn("glm4moelite: unexpected attn_kv_b layout", "name", t.Name(), "shape", t.Shape())
|
|
}
|
|
}
|
|
|
|
kTensor := t.Clone()
|
|
kTensor.SetRepacker(p.repackKVB(true, kvFirst, numHeads))
|
|
out = append(out, &ggml.Tensor{
|
|
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_k_b", 1),
|
|
Kind: t.Kind(),
|
|
Shape: []uint64{uint64(numHeads), uint64(kvLoraRank), uint64(qkNope)},
|
|
WriterTo: kTensor,
|
|
})
|
|
|
|
vTensor := t.Clone()
|
|
vTensor.SetRepacker(p.repackKVB(false, kvFirst, numHeads))
|
|
out = append(out, &ggml.Tensor{
|
|
Name: strings.Replace(t.Name(), "attn_kv_b", "attn_v_b", 1),
|
|
Kind: t.Kind(),
|
|
Shape: []uint64{uint64(numHeads), uint64(vHeadDim), uint64(kvLoraRank)},
|
|
WriterTo: vTensor,
|
|
})
|
|
continue
|
|
}
|
|
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
}
|
|
return out
|
|
}
|