Files
ollama/x/imagegen/cmd/engine/main.go
2026-01-27 18:49:06 -08:00

295 lines
8.3 KiB
Go

//go:build mlx
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"log"
"os"
"path/filepath"
"runtime/pprof"
"github.com/ollama/ollama/x/imagegen"
"github.com/ollama/ollama/x/imagegen/mlx"
"github.com/ollama/ollama/x/imagegen/models/flux2"
"github.com/ollama/ollama/x/imagegen/models/gemma3"
"github.com/ollama/ollama/x/imagegen/models/gpt_oss"
"github.com/ollama/ollama/x/imagegen/models/llama"
"github.com/ollama/ollama/x/imagegen/models/zimage"
"github.com/ollama/ollama/x/imagegen/safetensors"
)
// stringSlice is a flag type that accumulates multiple values
type stringSlice []string
func (s *stringSlice) String() string {
return fmt.Sprintf("%v", *s)
}
func (s *stringSlice) Set(value string) error {
*s = append(*s, value)
return nil
}
func main() {
modelPath := flag.String("model", "", "Model directory")
prompt := flag.String("prompt", "Hello", "Prompt")
// Text generation params
maxTokens := flag.Int("max-tokens", 100, "Max tokens")
temperature := flag.Float64("temperature", 0.7, "Temperature")
topP := flag.Float64("top-p", 0.9, "Top-p sampling")
topK := flag.Int("top-k", 40, "Top-k sampling")
imagePath := flag.String("image", "", "Image path for multimodal models")
// Image generation params
width := flag.Int("width", 0, "Image width (0 = auto from input or 1024)")
height := flag.Int("height", 0, "Image height (0 = auto from input or 1024)")
steps := flag.Int("steps", 0, "Denoising steps (0 = model default)")
seed := flag.Int64("seed", 42, "Random seed")
out := flag.String("output", "output.png", "Output path")
// Utility flags
listTensors := flag.Bool("list", false, "List tensors only")
cpuProfile := flag.String("cpuprofile", "", "Write CPU profile to file")
gpuCapture := flag.String("gpu-capture", "", "Capture GPU trace to .gputrace file (run with MTL_CAPTURE_ENABLED=1)")
wiredLimitGB := flag.Int("wired-limit", 32, "Metal wired memory limit in GB")
// Legacy mode flags
zimageFlag := flag.Bool("zimage", false, "Z-Image generation")
flux2Flag := flag.Bool("flux2", false, "FLUX.2 Klein generation")
var inputImages stringSlice
flag.Var(&inputImages, "input-image", "Input image for image editing (can be specified multiple times)")
negativePrompt := flag.String("negative-prompt", "", "Negative prompt for CFG (empty = no CFG, matching Python)")
cfgScale := flag.Float64("cfg-scale", 4.0, "CFG scale for image editing")
teaCache := flag.Bool("teacache", false, "Enable TeaCache for faster inference")
teaCacheThreshold := flag.Float64("teacache-threshold", 0.1, "TeaCache threshold (lower = more aggressive caching)")
fusedQKV := flag.Bool("fused-qkv", false, "Enable fused QKV projection for faster attention")
flag.Parse()
if *modelPath == "" {
flag.Usage()
return
}
// Check if MLX initialized successfully
if !mlx.IsMLXAvailable() {
log.Fatalf("MLX initialization failed: %v", mlx.GetMLXInitError())
}
// CPU profiling
if *cpuProfile != "" {
f, err := os.Create(*cpuProfile)
if err != nil {
log.Fatal(err)
}
defer f.Close()
if err := pprof.StartCPUProfile(f); err != nil {
log.Fatal(err)
}
defer pprof.StopCPUProfile()
}
var err error
// Handle legacy mode flags that aren't unified yet
switch {
case *zimageFlag:
m := &zimage.Model{}
if loadErr := m.Load(*modelPath); loadErr != nil {
log.Fatal(loadErr)
}
var img *mlx.Array
img, err = m.GenerateFromConfig(context.Background(), &zimage.GenerateConfig{
Prompt: *prompt,
NegativePrompt: *negativePrompt,
CFGScale: float32(*cfgScale),
Width: int32(*width),
Height: int32(*height),
Steps: *steps,
Seed: *seed,
CapturePath: *gpuCapture,
TeaCache: *teaCache,
TeaCacheThreshold: float32(*teaCacheThreshold),
FusedQKV: *fusedQKV,
})
if err == nil {
err = saveImageArray(img, *out)
}
case *flux2Flag:
m := &flux2.Model{}
if loadErr := m.Load(*modelPath); loadErr != nil {
log.Fatal(loadErr)
}
// Load input images with EXIF orientation correction
var loadedImages []image.Image
for _, path := range inputImages {
img, loadErr := loadImageWithEXIF(path)
if loadErr != nil {
log.Fatalf("Failed to load image %s: %v", path, loadErr)
}
loadedImages = append(loadedImages, img)
}
// When input images provided and user didn't override dimensions, use 0 to match input
fluxWidth := int32(*width)
fluxHeight := int32(*height)
if len(loadedImages) > 0 && *width == 0 && *height == 0 {
// Both unset, will auto-detect from input
} else if len(loadedImages) > 0 && *width == 0 {
fluxWidth = 0 // Compute from height + aspect ratio
} else if len(loadedImages) > 0 && *height == 0 {
fluxHeight = 0 // Compute from width + aspect ratio
}
var img *mlx.Array
img, err = m.GenerateFromConfig(context.Background(), &flux2.GenerateConfig{
Prompt: *prompt,
Width: fluxWidth,
Height: fluxHeight,
Steps: *steps,
GuidanceScale: float32(*cfgScale),
Seed: *seed,
CapturePath: *gpuCapture,
InputImages: loadedImages,
})
if err == nil {
err = saveImageArray(img, *out)
}
case *listTensors:
err = listModelTensors(*modelPath)
default:
// llm path
m, err := load(*modelPath)
if err != nil {
log.Fatal(err)
}
// Load image if provided and model supports it
var image *mlx.Array
if *imagePath != "" {
if mm, ok := m.(interface{ ImageSize() int32 }); ok {
image, err = gemma3.ProcessImage(*imagePath, mm.ImageSize())
if err != nil {
log.Fatal("load image:", err)
}
} else {
log.Fatal("model does not support image input")
}
}
err = generate(context.Background(), m, input{
Prompt: *prompt,
Image: image,
MaxTokens: *maxTokens,
Temperature: float32(*temperature),
TopP: float32(*topP),
TopK: *topK,
WiredLimitGB: *wiredLimitGB,
}, func(out output) {
if out.Text != "" {
fmt.Print(out.Text)
}
if out.Done {
fmt.Printf("\n\n[prefill: %.1f tok/s, gen: %.1f tok/s]\n", out.PrefillTokSec, out.GenTokSec)
}
})
}
if err != nil {
log.Fatal(err)
}
}
func listModelTensors(modelPath string) error {
weights, err := safetensors.LoadModelWeights(modelPath)
if err != nil {
return err
}
for _, name := range weights.ListTensors() {
info, _ := weights.GetTensorInfo(name)
fmt.Printf("%s: %v (%s)\n", name, info.Shape, info.Dtype)
}
return nil
}
// loadModel builds and evaluates a model using the common load pattern.
// Release safetensors BEFORE eval - lazy arrays have captured their data,
// and this reduces peak memory by ~6GB (matches mlx-lm behavior).
func loadModel[T Model](build func() T, cleanup func()) T {
m := build()
weights := mlx.Collect(m)
cleanup()
mlx.Eval(weights...)
return m
}
func load(modelPath string) (Model, error) {
kind, err := detectModelKind(modelPath)
if err != nil {
return nil, fmt.Errorf("detect model kind: %w", err)
}
switch kind {
case "gpt_oss":
return gpt_oss.Load(modelPath)
case "gemma3":
return gemma3.Load(modelPath)
case "gemma3_text":
return gemma3.LoadText(modelPath)
default:
return llama.Load(modelPath)
}
}
func detectModelKind(modelPath string) (string, error) {
indexPath := filepath.Join(modelPath, "model_index.json")
if _, err := os.Stat(indexPath); err == nil {
data, err := os.ReadFile(indexPath)
if err != nil {
return "zimage", nil
}
var index struct {
ClassName string `json:"_class_name"`
}
if err := json.Unmarshal(data, &index); err == nil {
switch index.ClassName {
case "FluxPipeline", "ZImagePipeline":
return "zimage", nil
case "Flux2KleinPipeline":
return "flux2", nil
}
}
return "zimage", nil
}
configPath := filepath.Join(modelPath, "config.json")
data, err := os.ReadFile(configPath)
if err != nil {
return "", fmt.Errorf("no config.json or model_index.json found: %w", err)
}
var cfg struct {
ModelType string `json:"model_type"`
}
if err := json.Unmarshal(data, &cfg); err != nil {
return "", fmt.Errorf("parse config.json: %w", err)
}
return cfg.ModelType, nil
}
// loadImageWithEXIF loads an image from a file path with EXIF orientation correction.
func loadImageWithEXIF(path string) (image.Image, error) {
data, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("read file: %w", err)
}
return imagegen.DecodeImage(data)
}