Files
sys/unix/linux/mkall.go
Dmitri Goutnik 2977c7732d unix: add ptracePtr that accepts pointer arg as unsafe.Pointer
The existing ptrace wrapper accepts pointer argument as an uintptr which
often points to the memory allocated in Go. This violates unsafe.Pointer safety
rules.

For golang/go#58387

Change-Id: Ib3b4c50368725191f0862c6c7c6d46b0568523c7
Reviewed-on: https://go-review.googlesource.com/c/sys/+/469835
Run-TryBot: Ian Lance Taylor <iant@google.com>
Reviewed-by: Bryan Mills <bcmills@google.com>
Run-TryBot: Bryan Mills <bcmills@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@google.com>
Auto-Submit: Ian Lance Taylor <iant@google.com>
2023-02-21 23:06:39 +00:00

1002 lines
29 KiB
Go

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// linux/mkall.go - Generates all Linux zsysnum, zsyscall, zerror, and ztype
// files for all Linux architectures supported by the go compiler. See
// README.md for more information about the build system.
// To run it you must have a git checkout of the Linux kernel and glibc. Once
// the appropriate sources are ready, the program is run as:
// go run linux/mkall.go <linux_dir> <glibc_dir>
//go:build ignore
// +build ignore
package main
import (
"bufio"
"bytes"
"debug/elf"
"encoding/binary"
"errors"
"fmt"
"go/build/constraint"
"io"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"sync"
"unicode"
)
// These will be paths to the appropriate source directories.
var LinuxDir string
var GlibcDir string
const TempDir = "/tmp"
const GOOS = "linux" // Only for Linux targets
const BuildArch = "amd64" // Must be built on this architecture
const MinKernel = "2.6.23" // https://golang.org/doc/install#requirements
type target struct {
GoArch string // Architecture name according to Go
LinuxArch string // Architecture name according to the Linux Kernel
GNUArch string // Architecture name according to GNU tools (https://wiki.debian.org/Multiarch/Tuples)
BigEndian bool // Default Little Endian
SignedChar bool // Is -fsigned-char needed (default no)
Bits int
env []string
stderrBuf bytes.Buffer
compiler string
}
// List of all Linux targets supported by the go compiler. Currently, sparc64 is
// not fully supported, but there is enough support already to generate Go type
// and error definitions.
var targets = []target{
{
GoArch: "386",
LinuxArch: "x86",
GNUArch: "i686-linux-gnu", // Note "i686" not "i386"
Bits: 32,
},
{
GoArch: "amd64",
LinuxArch: "x86",
GNUArch: "x86_64-linux-gnu",
Bits: 64,
},
{
GoArch: "arm64",
LinuxArch: "arm64",
GNUArch: "aarch64-linux-gnu",
SignedChar: true,
Bits: 64,
},
{
GoArch: "arm",
LinuxArch: "arm",
GNUArch: "arm-linux-gnueabi",
Bits: 32,
},
{
GoArch: "loong64",
LinuxArch: "loongarch",
GNUArch: "loongarch64-linux-gnu",
Bits: 64,
},
{
GoArch: "mips",
LinuxArch: "mips",
GNUArch: "mips-linux-gnu",
BigEndian: true,
Bits: 32,
},
{
GoArch: "mipsle",
LinuxArch: "mips",
GNUArch: "mipsel-linux-gnu",
Bits: 32,
},
{
GoArch: "mips64",
LinuxArch: "mips",
GNUArch: "mips64-linux-gnuabi64",
BigEndian: true,
Bits: 64,
},
{
GoArch: "mips64le",
LinuxArch: "mips",
GNUArch: "mips64el-linux-gnuabi64",
Bits: 64,
},
{
GoArch: "ppc",
LinuxArch: "powerpc",
GNUArch: "powerpc-linux-gnu",
BigEndian: true,
Bits: 32,
},
{
GoArch: "ppc64",
LinuxArch: "powerpc",
GNUArch: "powerpc64-linux-gnu",
BigEndian: true,
Bits: 64,
},
{
GoArch: "ppc64le",
LinuxArch: "powerpc",
GNUArch: "powerpc64le-linux-gnu",
Bits: 64,
},
{
GoArch: "riscv64",
LinuxArch: "riscv",
GNUArch: "riscv64-linux-gnu",
Bits: 64,
},
{
GoArch: "s390x",
LinuxArch: "s390",
GNUArch: "s390x-linux-gnu",
BigEndian: true,
SignedChar: true,
Bits: 64,
},
{
GoArch: "sparc64",
LinuxArch: "sparc",
GNUArch: "sparc64-linux-gnu",
BigEndian: true,
Bits: 64,
},
}
// ptracePairs is a list of pairs of targets that can, in some cases,
// run each other's binaries. 'archName' is the combined name of 'a1'
// and 'a2', which is used in the file name. Generally we use an 'x'
// suffix in the file name to indicate that the file works for both
// big-endian and little-endian, here we use 'nn' to indicate that this
// file is suitable for 32-bit and 64-bit.
var ptracePairs = []struct{ a1, a2, archName string }{
{"386", "amd64", "x86"},
{"arm", "arm64", "armnn"},
{"mips", "mips64", "mipsnn"},
{"mipsle", "mips64le", "mipsnnle"},
}
func main() {
if runtime.GOOS != GOOS || runtime.GOARCH != BuildArch {
fmt.Printf("Build system has GOOS_GOARCH = %s_%s, need %s_%s\n",
runtime.GOOS, runtime.GOARCH, GOOS, BuildArch)
return
}
// Check that we are using the new build system if we should
if os.Getenv("GOLANG_SYS_BUILD") != "docker" {
fmt.Println("In the new build system, mkall.go should not be called directly.")
fmt.Println("See README.md")
return
}
// Parse the command line options
if len(os.Args) != 3 {
fmt.Println("USAGE: go run linux/mkall.go <linux_dir> <glibc_dir>")
return
}
LinuxDir = os.Args[1]
GlibcDir = os.Args[2]
wg := sync.WaitGroup{}
for _, t := range targets {
fmt.Printf("arch %s: GENERATING\n", t.GoArch)
if err := t.setupEnvironment(); err != nil {
fmt.Printf("arch %s: could not setup environment: %v\n", t.GoArch, err)
break
}
includeDir := filepath.Join(TempDir, t.GoArch, "include")
// Make the include directory and fill it with headers
if err := os.MkdirAll(includeDir, os.ModePerm); err != nil {
fmt.Printf("arch %s: could not make directory: %v\n", t.GoArch, err)
break
}
// During header generation "/git/linux/scripts/basic/fixdep" is created by "basic/Makefile" for each
// instance of "make headers_install". This leads to a "text file is busy" error from any running
// "make headers_install" after the first one's target. Workaround is to serialize header generation
if err := t.makeHeaders(); err != nil {
fmt.Printf("arch %s: could not make header files: %v\n", t.GoArch, err)
break
}
wg.Add(1)
go func(t target) {
defer wg.Done()
fmt.Printf("arch %s: header files generated\n", t.GoArch)
if err := t.generateFiles(); err != nil {
fmt.Printf("%v\n***** FAILURE: %s *****\n\n", err, t.GoArch)
} else {
fmt.Printf("arch %s: SUCCESS\n", t.GoArch)
}
}(t)
}
wg.Wait()
fmt.Printf("----- GENERATING: merging generated files -----\n")
if err := mergeFiles(); err != nil {
fmt.Printf("%v\n***** FAILURE: merging generated files *****\n\n", err)
} else {
fmt.Printf("----- SUCCESS: merging generated files -----\n\n")
}
fmt.Printf("----- GENERATING ptrace pairs -----\n")
ok := true
for _, p := range ptracePairs {
if err := generatePtracePair(p.a1, p.a2, p.archName); err != nil {
fmt.Printf("%v\n***** FAILURE: %s/%s *****\n\n", err, p.a1, p.a2)
ok = false
}
}
// generate functions PtraceGetRegSetArm64 and PtraceSetRegSetArm64.
if err := generatePtraceRegSet("arm64"); err != nil {
fmt.Printf("%v\n***** FAILURE: generatePtraceRegSet(%q) *****\n\n", err, "arm64")
ok = false
}
if ok {
fmt.Printf("----- SUCCESS ptrace pairs -----\n\n")
}
}
func (t *target) printAndResetBuilder() {
if t.stderrBuf.Len() > 0 {
for _, l := range bytes.Split(t.stderrBuf.Bytes(), []byte{'\n'}) {
fmt.Printf("arch %s: stderr: %s\n", t.GoArch, l)
}
t.stderrBuf.Reset()
}
}
// Makes an exec.Cmd with Stderr attached to the target string Builder, and target environment
func (t *target) makeCommand(name string, args ...string) *exec.Cmd {
cmd := exec.Command(name, args...)
cmd.Env = t.env
cmd.Stderr = &t.stderrBuf
return cmd
}
// Set GOARCH for target and build environments.
func (t *target) setTargetBuildArch(cmd *exec.Cmd) {
// Set GOARCH_TARGET so command knows what GOARCH is..
var env []string
env = append(env, t.env...)
cmd.Env = append(env, "GOARCH_TARGET="+t.GoArch)
// Set GOARCH to host arch for command, so it can run natively.
for i, s := range cmd.Env {
if strings.HasPrefix(s, "GOARCH=") {
cmd.Env[i] = "GOARCH=" + BuildArch
}
}
}
// Runs the command, pipes output to a formatter, pipes that to an output file.
func (t *target) commandFormatOutput(formatter string, outputFile string,
name string, args ...string) (err error) {
mainCmd := t.makeCommand(name, args...)
if name == "mksyscall" {
args = append([]string{"run", "mksyscall.go"}, args...)
mainCmd = t.makeCommand("go", args...)
t.setTargetBuildArch(mainCmd)
} else if name == "mksysnum" {
args = append([]string{"run", "linux/mksysnum.go"}, args...)
mainCmd = t.makeCommand("go", args...)
t.setTargetBuildArch(mainCmd)
}
fmtCmd := t.makeCommand(formatter)
if formatter == "mkpost" {
fmtCmd = t.makeCommand("go", "run", "mkpost.go")
t.setTargetBuildArch(fmtCmd)
} else if formatter == "gofmt2" {
fmtCmd = t.makeCommand("gofmt")
mainCmd.Dir = filepath.Join(TempDir, t.GoArch, "mkerrors")
if err = os.MkdirAll(mainCmd.Dir, os.ModePerm); err != nil {
return err
}
}
defer t.printAndResetBuilder()
// mainCmd | fmtCmd > outputFile
if fmtCmd.Stdin, err = mainCmd.StdoutPipe(); err != nil {
return
}
if fmtCmd.Stdout, err = os.Create(outputFile); err != nil {
return
}
// Make sure the formatter eventually closes
if err = fmtCmd.Start(); err != nil {
return
}
defer func() {
fmtErr := fmtCmd.Wait()
if err == nil {
err = fmtErr
}
}()
return mainCmd.Run()
}
func (t *target) setupEnvironment() error {
// Setup environment variables
t.env = append(os.Environ(), fmt.Sprintf("%s=%s", "GOOS", GOOS))
t.env = append(t.env, fmt.Sprintf("%s=%s", "GOARCH", t.GoArch))
// Get appropriate compiler and emulator (unless on x86)
if t.LinuxArch != "x86" {
// Check/Setup cross compiler
t.compiler = t.GNUArch + "-gcc"
if _, err := exec.LookPath(t.compiler); err != nil {
return err
}
t.env = append(t.env, fmt.Sprintf("%s=%s", "CC", t.compiler))
// Check/Setup emulator (usually first component of GNUArch)
qemuArchName := t.GNUArch[:strings.Index(t.GNUArch, "-")]
if t.LinuxArch == "powerpc" {
qemuArchName = t.GoArch
}
// Fake uname for QEMU to allow running on Host kernel version < 4.15
if t.LinuxArch == "riscv" {
t.env = append(t.env, fmt.Sprintf("%s=%s", "QEMU_UNAME", "4.15"))
}
t.env = append(t.env, fmt.Sprintf("%s=%s", "GORUN", "qemu-"+qemuArchName))
} else {
t.compiler = "gcc"
t.env = append(t.env, fmt.Sprintf("%s=%s", "CC", "gcc"))
}
return nil
}
// Generates all the files for a Linux target
func (t *target) generateFiles() error {
// Make each of the four files
if err := t.makeZSysnumFile(); err != nil {
return fmt.Errorf("could not make zsysnum file: %v", err)
}
fmt.Printf("arch %s: zsysnum file generated\n", t.GoArch)
if err := t.makeZSyscallFile(); err != nil {
return fmt.Errorf("could not make zsyscall file: %v", err)
}
fmt.Printf("arch %s: zsyscall file generated\n", t.GoArch)
if err := t.makeZTypesFile(); err != nil {
return fmt.Errorf("could not make ztypes file: %v", err)
}
fmt.Printf("arch %s: ztypes file generated\n", t.GoArch)
if err := t.makeZErrorsFile(); err != nil {
return fmt.Errorf("could not make zerrors file: %v", err)
}
fmt.Printf("arch %s: zerrors file generated\n", t.GoArch)
return nil
}
// Create the Linux, glibc and ABI (C compiler convention) headers in the include directory.
func (t *target) makeHeaders() error {
defer t.printAndResetBuilder()
// Make the Linux headers we need for this architecture
linuxMake := t.makeCommand("make", "headers_install", "ARCH="+t.LinuxArch, "INSTALL_HDR_PATH="+filepath.Join(TempDir, t.GoArch))
linuxMake.Dir = LinuxDir
if err := linuxMake.Run(); err != nil {
return err
}
buildDir := filepath.Join(TempDir, t.GoArch, "build")
// A Temporary build directory for glibc
if err := os.MkdirAll(buildDir, os.ModePerm); err != nil {
return err
}
defer os.RemoveAll(buildDir)
// Make the glibc headers we need for this architecture
confScript := filepath.Join(GlibcDir, "configure")
glibcArgs := []string{"--prefix=" + filepath.Join(TempDir, t.GoArch), "--host=" + t.GNUArch}
if t.LinuxArch == "loongarch" {
// The minimum version requirement of the Loongarch for the kernel in glibc
// is 5.19, if --enable-kernel is less than 5.19, glibc handles errors
glibcArgs = append(glibcArgs, "--enable-kernel=5.19.0")
} else {
glibcArgs = append(glibcArgs, "--enable-kernel="+MinKernel)
}
glibcConf := t.makeCommand(confScript, glibcArgs...)
glibcConf.Dir = buildDir
if err := glibcConf.Run(); err != nil {
return err
}
glibcMake := t.makeCommand("make", "install-headers")
glibcMake.Dir = buildDir
if err := glibcMake.Run(); err != nil {
return err
}
// We only need an empty stubs file
stubsFile := filepath.Join(TempDir, t.GoArch, "include", "gnu", "stubs.h")
if file, err := os.Create(stubsFile); err != nil {
return err
} else {
file.Close()
}
// ABI headers will specify C compiler behavior for the target platform.
return t.makeABIHeaders()
}
// makeABIHeaders generates C header files based on the platform's calling convention.
// While many platforms have formal Application Binary Interfaces, in practice, whatever the
// dominant C compilers generate is the de-facto calling convention.
//
// We generate C headers instead of a Go file, so as to enable references to the ABI from Cgo.
func (t *target) makeABIHeaders() (err error) {
abiDir := filepath.Join(TempDir, t.GoArch, "include", "abi")
if err = os.Mkdir(abiDir, os.ModePerm); err != nil {
return err
}
if t.compiler == "" {
return errors.New("CC (compiler) env var not set")
}
// Build a sacrificial ELF file, to mine for C compiler behavior.
binPath := filepath.Join(TempDir, t.GoArch, "tmp_abi.o")
bin, err := t.buildELF(t.compiler, cCode, binPath)
if err != nil {
return fmt.Errorf("cannot build ELF to analyze: %v", err)
}
defer bin.Close()
defer os.Remove(binPath)
// Right now, we put everything in abi.h, but we may change this later.
abiFile, err := os.Create(filepath.Join(abiDir, "abi.h"))
if err != nil {
return err
}
defer func() {
if cerr := abiFile.Close(); cerr != nil && err == nil {
err = cerr
}
}()
if err = t.writeBitFieldMasks(bin, abiFile); err != nil {
return fmt.Errorf("cannot write bitfield masks: %v", err)
}
return nil
}
func (t *target) buildELF(cc, src, path string) (*elf.File, error) {
// Compile the cCode source using the set compiler - we will need its .data section.
// Do not link the binary, so that we can find .data section offsets from the symbol values.
ccCmd := t.makeCommand(cc, "-o", path, "-gdwarf", "-x", "c", "-c", "-")
ccCmd.Stdin = strings.NewReader(src)
ccCmd.Stdout = os.Stdout
defer t.printAndResetBuilder()
if err := ccCmd.Run(); err != nil {
return nil, fmt.Errorf("compiler error: %v", err)
}
bin, err := elf.Open(path)
if err != nil {
return nil, fmt.Errorf("cannot read ELF file %s: %v", path, err)
}
return bin, nil
}
func (t *target) writeBitFieldMasks(bin *elf.File, out io.Writer) error {
symbols, err := bin.Symbols()
if err != nil {
return fmt.Errorf("getting ELF symbols: %v", err)
}
var masksSym *elf.Symbol
for _, sym := range symbols {
if sym.Name == "masks" {
masksSym = &sym
}
}
if masksSym == nil {
return errors.New("could not find the 'masks' symbol in ELF symtab")
}
dataSection := bin.Section(".data")
if dataSection == nil {
return errors.New("ELF file has no .data section")
}
data, err := dataSection.Data()
if err != nil {
return fmt.Errorf("could not read .data section: %v\n", err)
}
var bo binary.ByteOrder
if t.BigEndian {
bo = binary.BigEndian
} else {
bo = binary.LittleEndian
}
// 64 bit masks of type uint64 are stored in the data section starting at masks.Value.
// Here we are running on AMD64, but these values may be big endian or little endian,
// depending on target architecture.
for i := uint64(0); i < 64; i++ {
off := masksSym.Value + i*8
// Define each mask in native by order, so as to match target endian.
fmt.Fprintf(out, "#define BITFIELD_MASK_%d %dULL\n", i, bo.Uint64(data[off:off+8]))
}
return nil
}
// makes the zsysnum_linux_$GOARCH.go file
func (t *target) makeZSysnumFile() error {
zsysnumFile := fmt.Sprintf("zsysnum_linux_%s.go", t.GoArch)
unistdFile := filepath.Join(TempDir, t.GoArch, "include", "asm", "unistd.h")
args := append(t.cFlags(), unistdFile)
return t.commandFormatOutput("gofmt", zsysnumFile, "mksysnum", args...)
}
// makes the zsyscall_linux_$GOARCH.go file
func (t *target) makeZSyscallFile() error {
zsyscallFile := fmt.Sprintf("zsyscall_linux_%s.go", t.GoArch)
// Find the correct architecture syscall file (might end with x.go)
archSyscallFile := fmt.Sprintf("syscall_linux_%s.go", t.GoArch)
if _, err := os.Stat(archSyscallFile); os.IsNotExist(err) {
shortArch := strings.TrimSuffix(t.GoArch, "le")
archSyscallFile = fmt.Sprintf("syscall_linux_%sx.go", shortArch)
}
args := append(t.mksyscallFlags(), "-tags", "linux,"+t.GoArch,
"syscall_linux.go",
archSyscallFile,
)
files, err := t.archMksyscallFiles()
if err != nil {
return fmt.Errorf("failed to check GOARCH-specific mksyscall files: %v", err)
}
args = append(args, files...)
return t.commandFormatOutput("gofmt", zsyscallFile, "mksyscall", args...)
}
// archMksyscallFiles produces additional file arguments to mksyscall if the
// build constraints in those files match those defined for target.
func (t *target) archMksyscallFiles() ([]string, error) {
// These input files don't fit the typical GOOS/GOARCH file name conventions
// but are included conditionally in the arguments to mksyscall based on
// whether or not the target matches the build constraints defined in each
// file.
//
// TODO(mdlayher): it should be possible to generalize this approach to work
// over all of syscall_linux_* rather than hard-coding a few special files.
// Investigate this.
inputs := []string{
// GOARCH: all except arm* and riscv.
"syscall_linux_alarm.go",
}
var outputs []string
for _, in := range inputs {
ok, err := t.matchesMksyscallFile(in)
if err != nil {
return nil, fmt.Errorf("failed to parse file %q: %v", in, err)
}
if ok {
// Constraints match, use for this target's code generation.
outputs = append(outputs, in)
}
}
return outputs, nil
}
// matchesMksyscallFile reports whether the input file contains constraints
// which match those defined for target.
func (t *target) matchesMksyscallFile(file string) (bool, error) {
f, err := os.Open(file)
if err != nil {
return false, err
}
defer f.Close()
var (
expr constraint.Expr
found bool
)
s := bufio.NewScanner(f)
for s.Scan() {
// Keep scanning until a valid constraint is found or we hit EOF.
//
// This only supports single-line constraints such as the //go:build
// convention used in Go 1.17+. Because the old //+build convention
// (which may have multiple lines of build tags) is being deprecated,
// we don't bother looking for multi-line constraints.
if expr, err = constraint.Parse(s.Text()); err == nil {
found = true
break
}
}
if err := s.Err(); err != nil {
return false, err
}
if !found {
return false, errors.New("no build constraints found")
}
// Do the defined constraints match target's GOOS/GOARCH?
ok := expr.Eval(func(tag string) bool {
return tag == GOOS || tag == t.GoArch
})
return ok, nil
}
// makes the zerrors_linux_$GOARCH.go file
func (t *target) makeZErrorsFile() error {
zerrorsFile := fmt.Sprintf("zerrors_linux_%s.go", t.GoArch)
return t.commandFormatOutput("gofmt2", zerrorsFile, "/"+filepath.Join("build", "unix", "mkerrors.sh"), t.cFlags()...)
}
// makes the ztypes_linux_$GOARCH.go file
func (t *target) makeZTypesFile() error {
ztypesFile := fmt.Sprintf("ztypes_linux_%s.go", t.GoArch)
cgoDir := filepath.Join(TempDir, t.GoArch, "cgo")
if err := os.MkdirAll(cgoDir, os.ModePerm); err != nil {
return err
}
args := []string{"tool", "cgo", "-godefs", "-objdir=" + cgoDir, "--"}
args = append(args, t.cFlags()...)
args = append(args, "linux/types.go")
return t.commandFormatOutput("mkpost", ztypesFile, "go", args...)
}
// Flags that should be given to gcc and cgo for this target
func (t *target) cFlags() []string {
// Compile statically to avoid cross-architecture dynamic linking.
flags := []string{"-Wall", "-Werror", "-static", "-I" + filepath.Join(TempDir, t.GoArch, "include")}
// Architecture-specific flags
if t.SignedChar {
flags = append(flags, "-fsigned-char")
}
if t.LinuxArch == "x86" {
flags = append(flags, fmt.Sprintf("-m%d", t.Bits))
}
return flags
}
// Flags that should be given to mksyscall for this target
func (t *target) mksyscallFlags() (flags []string) {
if t.Bits == 32 {
if t.BigEndian {
flags = append(flags, "-b32")
} else {
flags = append(flags, "-l32")
}
}
// This flag means a 64-bit value should use (even, odd)-pair.
if t.GoArch == "arm" || (t.LinuxArch == "mips" && t.Bits == 32) {
flags = append(flags, "-arm")
}
return
}
// Merge all the generated files for Linux targets
func mergeFiles() error {
// Setup environment variables
os.Setenv("GOOS", runtime.GOOS)
os.Setenv("GOARCH", runtime.GOARCH)
// Merge each of the four type of files
for _, ztyp := range []string{"zerrors", "zsyscall", "zsysnum", "ztypes"} {
cmd := exec.Command("go", "run", "./internal/mkmerge", "-out", fmt.Sprintf("%s_%s.go", ztyp, GOOS), fmt.Sprintf("%s_%s_*.go", ztyp, GOOS))
cmd.Stderr = os.Stderr
err := cmd.Run()
if err != nil {
return fmt.Errorf("could not merge %s files: %w", ztyp, err)
}
fmt.Printf("%s files merged\n", ztyp)
}
return nil
}
// generatePtracePair takes a pair of GOARCH values that can run each
// other's binaries, such as 386 and amd64. It extracts the PtraceRegs
// type for each one. It writes a new file defining the types
// PtraceRegsArch1 and PtraceRegsArch2 and the corresponding functions
// Ptrace{Get,Set}Regs{arch1,arch2}. This permits debugging the other
// binary on a native system. 'archName' is the combined name of 'arch1'
// and 'arch2', which is used in the file name.
func generatePtracePair(arch1, arch2, archName string) error {
def1, err := ptraceDef(arch1)
if err != nil {
return err
}
def2, err := ptraceDef(arch2)
if err != nil {
return err
}
f, err := os.Create(fmt.Sprintf("zptrace_%s_linux.go", archName))
if err != nil {
return err
}
buf := bufio.NewWriter(f)
fmt.Fprintf(buf, "// Code generated by linux/mkall.go generatePtracePair(%q, %q). DO NOT EDIT.\n", arch1, arch2)
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "//go:build linux && (%s || %s)\n", arch1, arch2)
fmt.Fprintf(buf, "// +build linux\n")
fmt.Fprintf(buf, "// +build %s %s\n", arch1, arch2)
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "package unix\n")
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "%s\n", `import "unsafe"`)
fmt.Fprintf(buf, "\n")
writeOnePtrace(buf, arch1, def1)
fmt.Fprintf(buf, "\n")
writeOnePtrace(buf, arch2, def2)
if err := buf.Flush(); err != nil {
return err
}
if err := f.Close(); err != nil {
return err
}
return nil
}
// generatePtraceRegSet takes a GOARCH value to generate a file zptrace_linux_{arch}.go
// containing functions PtraceGetRegSet{arch} and PtraceSetRegSet{arch}.
func generatePtraceRegSet(arch string) error {
f, err := os.Create(fmt.Sprintf("zptrace_linux_%s.go", arch))
if err != nil {
return err
}
buf := bufio.NewWriter(f)
fmt.Fprintf(buf, "// Code generated by linux/mkall.go generatePtraceRegSet(%q). DO NOT EDIT.\n", arch)
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "package unix\n")
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "%s\n", `import "unsafe"`)
fmt.Fprintf(buf, "\n")
uarch := string(unicode.ToUpper(rune(arch[0]))) + arch[1:]
fmt.Fprintf(buf, "// PtraceGetRegSet%s fetches the registers used by %s binaries.\n", uarch, arch)
fmt.Fprintf(buf, "func PtraceGetRegSet%s(pid, addr int, regsout *PtraceRegs%s) error {\n", uarch, uarch)
fmt.Fprintf(buf, "\tiovec := Iovec{(*byte)(unsafe.Pointer(regsout)), uint64(unsafe.Sizeof(*regsout))}\n")
fmt.Fprintf(buf, "\treturn ptracePtr(PTRACE_GETREGSET, pid, uintptr(addr), unsafe.Pointer(&iovec))\n")
fmt.Fprintf(buf, "}\n")
fmt.Fprintf(buf, "\n")
fmt.Fprintf(buf, "// PtraceSetRegSet%s sets the registers used by %s binaries.\n", uarch, arch)
fmt.Fprintf(buf, "func PtraceSetRegSet%s(pid, addr int, regs *PtraceRegs%s) error {\n", uarch, uarch)
fmt.Fprintf(buf, "\tiovec := Iovec{(*byte)(unsafe.Pointer(regs)), uint64(unsafe.Sizeof(*regs))}\n")
fmt.Fprintf(buf, "\treturn ptracePtr(PTRACE_SETREGSET, pid, uintptr(addr), unsafe.Pointer(&iovec))\n")
fmt.Fprintf(buf, "}\n")
if err := buf.Flush(); err != nil {
return err
}
if err := f.Close(); err != nil {
return err
}
return nil
}
// ptraceDef returns the definition of PtraceRegs for arch.
func ptraceDef(arch string) (string, error) {
filename := fmt.Sprintf("ztypes_linux_%s.go", arch)
data, err := ioutil.ReadFile(filename)
if err != nil {
return "", fmt.Errorf("reading %s: %v", filename, err)
}
start := bytes.Index(data, []byte("type PtraceRegs struct"))
if start < 0 {
return "", fmt.Errorf("%s: no definition of PtraceRegs", filename)
}
data = data[start:]
end := bytes.Index(data, []byte("\n}\n"))
if end < 0 {
return "", fmt.Errorf("%s: can't find end of PtraceRegs definition", filename)
}
return string(data[:end+2]), nil
}
// writeOnePtrace writes out the ptrace definitions for arch.
func writeOnePtrace(w io.Writer, arch, def string) {
uarch := string(unicode.ToUpper(rune(arch[0]))) + arch[1:]
fmt.Fprintf(w, "// PtraceRegs%s is the registers used by %s binaries.\n", uarch, arch)
fmt.Fprintf(w, "%s\n", strings.Replace(def, "PtraceRegs", "PtraceRegs"+uarch, 1))
fmt.Fprintf(w, "\n")
fmt.Fprintf(w, "// PtraceGetRegs%s fetches the registers used by %s binaries.\n", uarch, arch)
fmt.Fprintf(w, "func PtraceGetRegs%s(pid int, regsout *PtraceRegs%s) error {\n", uarch, uarch)
fmt.Fprintf(w, "\treturn ptracePtr(PTRACE_GETREGS, pid, 0, unsafe.Pointer(regsout))\n")
fmt.Fprintf(w, "}\n")
fmt.Fprintf(w, "\n")
fmt.Fprintf(w, "// PtraceSetRegs%s sets the registers used by %s binaries.\n", uarch, arch)
fmt.Fprintf(w, "func PtraceSetRegs%s(pid int, regs *PtraceRegs%s) error {\n", uarch, uarch)
fmt.Fprintf(w, "\treturn ptracePtr(PTRACE_SETREGS, pid, 0, unsafe.Pointer(regs))\n")
fmt.Fprintf(w, "}\n")
}
// cCode is compiled for the target architecture, and the resulting data section is carved for
// the statically initialized bit masks.
const cCode = `
// Bit fields are used in some system calls and other ABIs, but their memory layout is
// implementation-defined [1]. Even with formal ABIs, bit fields are a source of subtle bugs [2].
// Here we generate the offsets for all 64 bits in an uint64.
// 1: http://en.cppreference.com/w/c/language/bit_field
// 2: https://lwn.net/Articles/478657/
#include <stdint.h>
struct bitfield {
union {
uint64_t val;
struct {
uint64_t u64_bit_0 : 1;
uint64_t u64_bit_1 : 1;
uint64_t u64_bit_2 : 1;
uint64_t u64_bit_3 : 1;
uint64_t u64_bit_4 : 1;
uint64_t u64_bit_5 : 1;
uint64_t u64_bit_6 : 1;
uint64_t u64_bit_7 : 1;
uint64_t u64_bit_8 : 1;
uint64_t u64_bit_9 : 1;
uint64_t u64_bit_10 : 1;
uint64_t u64_bit_11 : 1;
uint64_t u64_bit_12 : 1;
uint64_t u64_bit_13 : 1;
uint64_t u64_bit_14 : 1;
uint64_t u64_bit_15 : 1;
uint64_t u64_bit_16 : 1;
uint64_t u64_bit_17 : 1;
uint64_t u64_bit_18 : 1;
uint64_t u64_bit_19 : 1;
uint64_t u64_bit_20 : 1;
uint64_t u64_bit_21 : 1;
uint64_t u64_bit_22 : 1;
uint64_t u64_bit_23 : 1;
uint64_t u64_bit_24 : 1;
uint64_t u64_bit_25 : 1;
uint64_t u64_bit_26 : 1;
uint64_t u64_bit_27 : 1;
uint64_t u64_bit_28 : 1;
uint64_t u64_bit_29 : 1;
uint64_t u64_bit_30 : 1;
uint64_t u64_bit_31 : 1;
uint64_t u64_bit_32 : 1;
uint64_t u64_bit_33 : 1;
uint64_t u64_bit_34 : 1;
uint64_t u64_bit_35 : 1;
uint64_t u64_bit_36 : 1;
uint64_t u64_bit_37 : 1;
uint64_t u64_bit_38 : 1;
uint64_t u64_bit_39 : 1;
uint64_t u64_bit_40 : 1;
uint64_t u64_bit_41 : 1;
uint64_t u64_bit_42 : 1;
uint64_t u64_bit_43 : 1;
uint64_t u64_bit_44 : 1;
uint64_t u64_bit_45 : 1;
uint64_t u64_bit_46 : 1;
uint64_t u64_bit_47 : 1;
uint64_t u64_bit_48 : 1;
uint64_t u64_bit_49 : 1;
uint64_t u64_bit_50 : 1;
uint64_t u64_bit_51 : 1;
uint64_t u64_bit_52 : 1;
uint64_t u64_bit_53 : 1;
uint64_t u64_bit_54 : 1;
uint64_t u64_bit_55 : 1;
uint64_t u64_bit_56 : 1;
uint64_t u64_bit_57 : 1;
uint64_t u64_bit_58 : 1;
uint64_t u64_bit_59 : 1;
uint64_t u64_bit_60 : 1;
uint64_t u64_bit_61 : 1;
uint64_t u64_bit_62 : 1;
uint64_t u64_bit_63 : 1;
};
};
};
struct bitfield masks[] = {
{.u64_bit_0 = 1},
{.u64_bit_1 = 1},
{.u64_bit_2 = 1},
{.u64_bit_3 = 1},
{.u64_bit_4 = 1},
{.u64_bit_5 = 1},
{.u64_bit_6 = 1},
{.u64_bit_7 = 1},
{.u64_bit_8 = 1},
{.u64_bit_9 = 1},
{.u64_bit_10 = 1},
{.u64_bit_11 = 1},
{.u64_bit_12 = 1},
{.u64_bit_13 = 1},
{.u64_bit_14 = 1},
{.u64_bit_15 = 1},
{.u64_bit_16 = 1},
{.u64_bit_17 = 1},
{.u64_bit_18 = 1},
{.u64_bit_19 = 1},
{.u64_bit_20 = 1},
{.u64_bit_21 = 1},
{.u64_bit_22 = 1},
{.u64_bit_23 = 1},
{.u64_bit_24 = 1},
{.u64_bit_25 = 1},
{.u64_bit_26 = 1},
{.u64_bit_27 = 1},
{.u64_bit_28 = 1},
{.u64_bit_29 = 1},
{.u64_bit_30 = 1},
{.u64_bit_31 = 1},
{.u64_bit_32 = 1},
{.u64_bit_33 = 1},
{.u64_bit_34 = 1},
{.u64_bit_35 = 1},
{.u64_bit_36 = 1},
{.u64_bit_37 = 1},
{.u64_bit_38 = 1},
{.u64_bit_39 = 1},
{.u64_bit_40 = 1},
{.u64_bit_41 = 1},
{.u64_bit_42 = 1},
{.u64_bit_43 = 1},
{.u64_bit_44 = 1},
{.u64_bit_45 = 1},
{.u64_bit_46 = 1},
{.u64_bit_47 = 1},
{.u64_bit_48 = 1},
{.u64_bit_49 = 1},
{.u64_bit_50 = 1},
{.u64_bit_51 = 1},
{.u64_bit_52 = 1},
{.u64_bit_53 = 1},
{.u64_bit_54 = 1},
{.u64_bit_55 = 1},
{.u64_bit_56 = 1},
{.u64_bit_57 = 1},
{.u64_bit_58 = 1},
{.u64_bit_59 = 1},
{.u64_bit_60 = 1},
{.u64_bit_61 = 1},
{.u64_bit_62 = 1},
{.u64_bit_63 = 1}
};
int main(int argc, char **argv) {
struct bitfield *mask_ptr = &masks[0];
return mask_ptr->val;
}
`