test: add image gen test case (#13698)

* test: fix type regression in tools test.

* test: add image gen integration test
This commit is contained in:
Daniel Hiltgen
2026-01-19 16:01:31 -08:00
committed by GitHub
parent e98b5e8b4e
commit c42e9d244f

View File

@@ -0,0 +1,174 @@
//go:build integration
package integration
import (
"bytes"
"context"
"encoding/base64"
"encoding/json"
"fmt"
"net/http"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
imagegenapi "github.com/ollama/ollama/x/imagegen/api"
)
func TestImageGeneration(t *testing.T) {
skipUnderMinVRAM(t, 8)
type testCase struct {
imageGenModel string
visionModel string
prompt string
expectedWords []string
}
testCases := []testCase{
{
imageGenModel: "jmorgan/z-image-turbo",
visionModel: "llama3.2-vision",
prompt: "A cartoon style llama flying like a superhero through the air with clouds in the background",
expectedWords: []string{"llama", "flying", "cartoon", "cloud", "sky", "superhero", "air", "animal", "camelid"},
},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%s->%s", tc.imageGenModel, tc.visionModel), func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel()
client, testEndpoint, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Pull both models
if err := PullIfMissing(ctx, client, tc.imageGenModel); err != nil {
t.Fatalf("failed to pull image gen model: %v", err)
}
if err := PullIfMissing(ctx, client, tc.visionModel); err != nil {
t.Fatalf("failed to pull vision model: %v", err)
}
// Generate the image
t.Logf("Generating image with prompt: %s", tc.prompt)
imageBase64, err := generateImage(ctx, testEndpoint, tc.imageGenModel, tc.prompt)
if err != nil {
if strings.Contains(err.Error(), "image generation not available") {
t.Skip("Target system does not support image generation")
} else if strings.Contains(err.Error(), "executable file not found in") { // Windows pattern, not yet supported
t.Skip("Windows does not support image generation yet")
} else if strings.Contains(err.Error(), "CUDA driver version is insufficient") {
t.Skip("Driver is too old")
} else if strings.Contains(err.Error(), "insufficient memory for image generation") {
t.Skip("insufficient memory for image generation")
} else if strings.Contains(err.Error(), "error while loading shared libraries: libcuda.so.1") { // AMD GPU or CPU
t.Skip("CUDA GPU is not available")
} else if strings.Contains(err.Error(), "ollama-mlx: no such file or directory") {
// most likely linux arm - not supported yet
t.Skip("unsupported architecture")
}
t.Fatalf("failed to generate image: %v", err)
}
imageData, err := base64.StdEncoding.DecodeString(imageBase64)
if err != nil {
t.Fatalf("failed to decode image: %v", err)
}
t.Logf("Generated image: %d bytes", len(imageData))
// Preload vision model and check GPU loading
err = client.Generate(ctx, &api.GenerateRequest{Model: tc.visionModel}, func(response api.GenerateResponse) error { return nil })
if err != nil {
t.Fatalf("failed to load vision model: %v", err)
}
// Use vision model to describe the image
chatReq := api.ChatRequest{
Model: tc.visionModel,
Messages: []api.Message{
{
Role: "user",
Content: "Describe this image in detail. What is shown? What style is it? What is the main subject doing?",
Images: []api.ImageData{imageData},
},
},
Stream: &stream,
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
}
// Verify the vision model's response contains expected keywords
response := DoChat(ctx, t, client, chatReq, tc.expectedWords, 240*time.Second, 30*time.Second)
if response != nil {
t.Logf("Vision model response: %s", response.Content)
// Additional detailed check for keywords
content := strings.ToLower(response.Content)
foundWords := []string{}
missingWords := []string{}
for _, word := range tc.expectedWords {
if strings.Contains(content, word) {
foundWords = append(foundWords, word)
} else {
missingWords = append(missingWords, word)
}
}
t.Logf("Found keywords: %v", foundWords)
if len(missingWords) > 0 {
t.Logf("Missing keywords (at least one was found so test passed): %v", missingWords)
}
}
})
}
}
// generateImage calls the OpenAI-compatible image generation API and returns the base64 image data
func generateImage(ctx context.Context, endpoint, model, prompt string) (string, error) {
reqBody := imagegenapi.ImageGenerationRequest{
Model: model,
Prompt: prompt,
N: 1,
Size: "512x512",
ResponseFormat: "b64_json",
}
jsonBody, err := json.Marshal(reqBody)
if err != nil {
return "", fmt.Errorf("failed to marshal request: %w", err)
}
url := fmt.Sprintf("http://%s/v1/images/generations", endpoint)
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader(jsonBody))
if err != nil {
return "", fmt.Errorf("failed to create request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("failed to send request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
var buf bytes.Buffer
buf.ReadFrom(resp.Body)
return "", fmt.Errorf("unexpected status code %d: %s", resp.StatusCode, buf.String())
}
var genResp imagegenapi.ImageGenerationResponse
if err := json.NewDecoder(resp.Body).Decode(&genResp); err != nil {
return "", fmt.Errorf("failed to decode response: %w", err)
}
if len(genResp.Data) == 0 {
return "", fmt.Errorf("no image data in response")
}
return genResp.Data[0].B64JSON, nil
}